Newer
Older
MODULE ExB_shear_flow
! This module contains the necessary tools to implement ExB shearing flow effects.
! The algorithm is taken from the presentation of Hammett et al. 2006 (APS) and
! it the one used in GS2.
IMPLICIT NONE
! Variables
REAL(xp), PUBLIC, PROTECTED :: gamma_E = 0._xp ! ExB background shearing rate \gamma_E
REAL(xp), PUBLIC, PROTECTED :: t0, inv_t0 = 0._xp ! charact. shear time
REAL(xp), DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: sky_ExB ! shift of the kx modes, kx* = kx + s(ky)
REAL(xp), DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: sky_ExB_full ! full ky version
INTEGER, DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: jump_ExB ! jump to do to shift the kx grids
LOGICAL, DIMENSION(:), ALLOCATABLE, PUBLIC, PROTECTED :: shiftnow_ExB ! Indicates if there is a line to shift
COMPLEX(xp),DIMENSION(:,:), ALLOCATABLE, PUBLIC, PROTECTED :: ExB_NL_factor! factor for nonlinear term
COMPLEX(xp),DIMENSION(:,:), ALLOCATABLE, PUBLIC, PROTECTED :: inv_ExB_NL_factor
LOGICAL, PUBLIC, PROTECTED :: ExB = .false. ! presence of ExB background shearing rate
REAL(xp), PUBLIC, PROTECTED :: maximal_kx, minimal_kx ! max and min kx evolved for array shifting
! Routines
PUBLIC :: Setup_ExB_shear_flow, Array_shift_ExB_shear_flow, Update_ExB_shear_flow
CONTAINS
! Setup the variables for the ExB shear
SUBROUTINE Setup_ExB_shear_flow(ExBrate)
USE grid, ONLY: Nx, local_nky, total_nky, local_nx, Ny, deltakx, deltaky,&
USE geometry, ONLY: Cyq0_x0, C_y
USE model, ONLY: LINEARITY
IMPLICIT NONE
! Setup the ExB shearing rate and aux var
! In GENE, there is a minus sign here...
gamma_E = ExBrate*C_y*abs(Cyq0_x0/C_y)
IF(abs(gamma_E) .GT. EPSILON(gamma_E)) THEN
ExB = .TRUE.
t0 = deltakx/deltaky/gamma_E
inv_t0 = 1._xp/t0
ELSE ! avoid 1/0 division (t0 is killed anyway in this case)
ExB = .FALSE.
t0 = 0._xp
inv_t0 = 0._xp
ENDIF
! Setup the ExB shift array
ALLOCATE(sky_ExB(local_nky))
! consider no initial shift (maybe changed if restart)
sky_ExB = 0._xp
! Midpoint init
DO iky = 1,local_nky
sky_ExB(iky) = sky_ExB(iky) !+ 0.5_xp*kyarray(iky)*gamma_E*dt
ENDDO
ALLOCATE(sky_ExB_full(total_nky+1))
! consider no initial shift (maybe changed if restart)
! Midpoint init
DO iky = 1,total_nky+1
sky_ExB_full(iky) = sky_ExB_full(iky) !+ 0.5_xp*REAL(iky-1,xp)*deltaky*gamma_E*dt
ENDDO
ALLOCATE(jump_ExB(local_nky))
jump_ExB = 0
! Setup the shifting flag array
ALLOCATE(shiftnow_ExB(local_nky))
shiftnow_ExB = .FALSE.
! Setup nonlinear factor
ALLOCATE( ExB_NL_factor(Nx,local_nky))
ALLOCATE(inv_ExB_NL_factor(Ny/2+1,local_nx))
ExB_NL_factor = 1._xp
inv_ExB_NL_factor = 1._xp
! Setup maximal evolved modes for the shift conditions
SELECT CASE (LINEARITY)
CASE('linear') ! If linear we just use the max kx
maximal_kx = kx_max
minimal_kx = kx_min
CASE('nonlinear') ! If NL, 2/3 rule
maximal_kx = 2._xp/3._xp*kx_max-deltakx
minimal_kx = 2._xp/3._xp*kx_min+deltakx
END SELECT
END SUBROUTINE Setup_ExB_shear_flow
! update the ExB shear value for the next time step
SUBROUTINE Update_ExB_shear_flow(step_number)
USE basic, ONLY: dt!,time
USE grid, ONLY: local_nky, total_nky, kyarray, inv_dkx, update_grids, deltaky!,kyarray_full
USE geometry, ONLY: gxx,gxy,gyy,inv_hatB2, evaluate_magn_curv
USE numerics, ONLY: evaluate_EM_op, evaluate_kernels
USE model, ONLY: LINEARITY
USE time_integration, ONLY: c_E!, ntimelevel
IMPLICIT NONE
INTEGER, INTENT(IN) :: step_number
! local var
INTEGER :: iky
! do nothing if no ExB
IF(ExB) THEN
IF (step_number .LT. 0) THEN ! not updated each substeps (call from control)
dt_sub = dt
ELSEIF(step_number .GT. 1) THEN ! updated each substeps
dt_sub = (c_E(step_number)-c_E(step_number-1))*dt
ELSE ! first step is at t=0
dt_sub = 0._xp
ENDIF
! Do nothing if dt is 0
IF(dt_sub .GT. epsilon(dt_sub)) THEN
! Update new shear value
DO iky = 1,local_nky
!! This must be done incrementely to be able to pull it back
! when a grid shift occurs
sky_ExB(iky) = sky_ExB(iky) - kyarray(iky)*gamma_E*dt_sub
jump_ExB(iky) = NINT(sky_ExB(iky)*inv_dkx)
! If the jump is 1 or more for a given ky, we flag the index
! in shiftnow_ExB and will use it in Shift_fields to avoid
! zero-shiftings that may be majoritary.
shiftnow_ExB(iky) = (abs(jump_ExB(iky)) .GT. 0)
ENDDO
! Update the full skyExB array too
DO iky = 1,total_nky+1
sky_ExB_full(iky) = sky_ExB_full(iky) - REAL(iky-1,xp)*deltaky*gamma_E*dt_sub
ENDDO
! Shift the arrays if the shear value sky is too high
CALL Array_shift_ExB_shear_flow
! We update the operators and grids
! update the grids
CALL update_grids(sky_ExB,gxx,gxy,gyy,inv_hatB2)
! update the EM op., the kernels and the curvature op.
CALL evaluate_kernels
CALL evaluate_EM_op
CALL evaluate_magn_curv
! update the ExB nonlinear factor...
IF(LINEARITY .EQ. 'nonlinear') &
CALL update_nonlinear_ExB_factors(dt_sub)
ENDIF
ENDIF
END SUBROUTINE Update_ExB_shear_flow
! According to the current ExB shear value we update
! the fields by imposing a shift on kx
SUBROUTINE Array_shift_ExB_shear_flow
USE grid, ONLY: local_nky, total_nky, update_grids, &
total_nkx, deltakx, kxarray0, inv_dkx!,kx_min, kx_max
USE prec_const, ONLY: PI
USE fields, ONLY: moments, phi, psi
USE numerics, ONLY: evaluate_EM_op, evaluate_kernels
IMPLICIT NONE
! local var
INTEGER :: iky, ikx, ikx_s, i_, loopstart, loopend, increment, jump_
! shift all local fields and correct the local shift value
DO iky = 1,local_Nky
IF(shiftnow_ExB(iky)) THEN
! We shift the array from left to right or right to left according to the jump
! This avoids to make copy
IF(jump_ExB(iky) .LT. 0) THEN
loopstart = 1
loopend = total_nkx
increment = 1
ELSE
loopstart = total_nkx
loopend = 1
increment = -1
!loop to go through the array in a monotonic kx order
! Recall: the kx array is organized as
! 6 7 8 1 2 3 4 5 (indices ikx)
! -3 -2 -1 0 1 2 3 4 (values in dkx)
! to monotonically travel across the kx array the indices write
! 67812345 for positive shift or 54321678 for negative shift
DO i_ = loopstart, loopend, increment
! We shift our index since kx is stored in a [0 kmax]U[kmin -dk] fashion
IF (i_ .LT. total_nkx/2) THEN ! go to the negative kx region
ikx = i_ + total_nkx/2 + 1
ELSE ! positive
ikx = i_ - total_nkx/2 + 1
ENDIF
ikx_s = ikx - jump_ExB(iky)
IF (ikx_s .LE. 0) &
ikx_s = ikx_s + total_nkx
IF (ikx_s .GT. total_nkx) &
ikx_s = ikx_s - total_nkx
! Then we test if the shifted modes are still contained in our resolution
IF ( (kxarray0(ikx)+jump_ExB(iky)*deltakx .LE. maximal_kx) .AND. &
(kxarray0(ikx)+jump_ExB(iky)*deltakx .GE. minimal_kx)) THEN
moments(:,:,:,iky,ikx,:,:) = moments(:,:,:,iky,ikx_s,:,:)
phi(iky,ikx,:) = phi(iky,ikx_s,:)
psi(iky,ikx,:) = psi(iky,ikx_s,:)
ELSE ! if it is not, it is lost (~dissipation for high modes)
moments(:,:,:,iky,ikx,:,:) = 0._xp
phi(iky,ikx,:) = 0._xp
psi(iky,ikx,:) = 0._xp
ENDIF
ENDDO
! correct the shift value s(ky) for this row
sky_ExB(iky) = sky_ExB(iky) - jump_ExB(iky)*deltakx
! reset the flag
shiftnow_ExB(iky) = .FALSE.
! Check the global shift values
DO iky = 1,total_nky+1
jump_ = NINT(sky_ExB_full(iky)*inv_dkx)
IF (ABS(jump_) .GT. 0) &
sky_ExB_full(iky) = sky_ExB_full(iky) - jump_*deltakx
ENDDO
END SUBROUTINE Array_shift_ExB_shear_flow
SUBROUTINE Update_nonlinear_ExB_factors(dt_sub)
USE grid, ONLY: local_nky, local_nky_offset, Nx, Ny, local_nx, deltakx,&
local_nx_offset, deltaky, update_grids!,xarray, ikyarray, inv_ikyarray
USE basic, ONLY: time!, dt
! USE time_integration, ONLY: c_E
REAL(xp), INTENT(IN) :: dt_sub
INTEGER :: iky, ix
REAL(xp):: dt_ExB, J_xp, inv_J, &
I_xp, deltax, Lx, xval, tnow, kxExB, dkx_ExB, v_ExB
! aux val
tnow = time + dt_sub
Lx = 2._xp*pi/deltakx
deltax = Lx/REAL(Nx,xp)
DO iky = 1,local_nky ! WARNING: Local indices ky loop
! for readability
! J_xp = ikyarray(iky+local_nky_offset)
! inv_J = inv_ikyarray(iky+local_nky_offset)
J_xp = REAL(iky+local_nky_offset-1,xp)
IF(J_xp .GT. 0._xp) THEN
inv_J = 1._xp/J_xp
ELSE
inv_J = 0._xp
ENDIF
! compute dt factor
dt_ExB = (tnow - t0*inv_J*ANINT(J_xp*tnow*inv_t0,xp))
v_ExB = -gamma_E*J_xp*deltaky
dkx_ExB= v_ExB*tnow - ANINT(v_ExB*tnow/deltakx,xp)*deltakx
I_xp = REAL(ix-1,xp)
xval = I_xp*deltax
kxExB = gamma_E*J_xp*deltaky*dt_ExB
! kxExB = sky_ExB(iky) ! GENE
kxExB = dkx_ExB ! home made
ExB_NL_factor(ix,iky) = EXP(-imagu*kxExB*xval)
! ExB_NL_factor(ix,iky) = 1._xp + (imagu*kxExB*xval)
DO iky = 1,Ny/2+1 ! WARNING: Global indices ky loop
! for readability
J_xp = REAL(iky-1,xp)
IF(J_xp .GT. 0._xp) THEN
inv_J = 1._xp/J_xp
ELSE
inv_J = 0._xp
ENDIF
! compute dt factor
dt_ExB = tnow - t0*inv_J*ANINT(J_xp*tnow*inv_t0,xp)
v_ExB = -gamma_E*J_xp*deltaky
dkx_ExB= v_ExB*tnow - ANINT(v_ExB*tnow/deltakx,xp)*deltakx
I_xp = REAL(ix+local_nx_offset-1,xp)
xval = I_xp*deltax
! kxExB = gamma_E*J_xp*deltaky*dt_ExB
! kxExB = sky_ExB_full(iky) ! GENE
kxExB = dkx_ExB ! home made
inv_ExB_NL_factor(iky,ix) = EXP(imagu*kxExB*xval)
! inv_ExB_NL_factor(iky,ix) = 1._xp + (imagu*kxExB*xval)
END SUBROUTINE Update_nonlinear_ExB_factors
END MODULE ExB_shear_flow