-
Antoine Cyril David Hoffmann authoredAntoine Cyril David Hoffmann authored
compute_fa_1D.m 3.32 KiB
function [s,x, Fs, Fx] = compute_fa_1D(data, options)
%% Compute the dispersion function from the moment hierarchi decomp.
% Normalized Hermite
Hp = @(p,s) polyval(HermitePoly(p),s)./sqrt(2.^p.*factorial(p));
% Hp = @(p,s) hermiteH(p,s)./sqrt(2.^p.*factorial(p));
% Laguerre
Lj = @(j,x) polyval(LaguerrePoly(j),x);
% Maxwellian factor
FaM = @(s,x) exp(-s.^2-x);
s = options.SPAR;
x = options.XPERP;
smin = min(abs(s));
xmin = min(abs(x));
[~, ikx0] = min(abs(data.kx));
[~, iky0] = min(abs(data.ky));
kx_ = data.kx; ky_ = data.ky;
switch options.SPECIE
case 'e'
Napj_ = data.Nepj;
parray = double(data.Pe);
jarray = double(data.Je);
case 'i'
Napj_ = data.Nipj;
parray = double(data.Pi);
jarray = double(data.Ji);
end
Np = numel(parray); Nj = numel(jarray);
switch options.Z
case 'avg'
Napj_ = mean(Napj_,5);
phi_ = mean(data.PHI,3);
otherwise
[~,iz] = min(abs(options.Z-data.z));
Napj_ = Napj_(:,:,:,:,iz,:);
phi_ = data.PHI(:,:,iz);
end
Napj_ = squeeze(Napj_);
frames = options.T;
for it = 1:numel(options.T)
[~,frames(it)] = min(abs(options.T(it)-data.Ts5D));
end
Napj_ = mean(Napj_(:,:,:,:,frames),5);
Napj_ = squeeze(Napj_);
if options.non_adiab
for ij_ = 1:Nj
for ikx = 1:data.Nkx
for iky = 1:data.Nky
kp_ = sqrt(kx_(ikx)^2 + ky_(iky)^2);
Napj_(1,ij_,ikx,iky) = Napj_(1,ij_,ikx,iky) + kernel(ij_,kp_)*phi_(ikx,iky);
end
end
end
end
% x = 0
if options.RMS
Fs = zeros(data.Nkx,data.Nky,numel(s));
FAM = FaM(s,xmin);
for ip_ = 1:Np
p_ = parray(ip_);
HH = Hp(p_,s);
for ij_ = 1:Nj
j_ = jarray(ij_);
LL = Lj(j_,xmin);
HLF = HH.*LL.*FAM;
for ikx = 1:data.Nkx
for iky = 1:data.Nky
Fs(ikx,iky,:) = squeeze(Fs(ikx,iky,:))' + Napj_(ip_,ij_,ikx,iky)*HLF;
end
end
end
end
else
Fs = s*0;
FAM = FaM(s,xmin);
for ip_ = 1:Np
p_ = parray(ip_);
HH = Hp(p_,s);
for ij_ = 1:Nj
j_ = jarray(ij_);
LL = Lj(j_,xmin);
Fs = Fs + squeeze(Napj_(ip_,ij_,ikx0,iky0))*HH.*LL.*FAM;
end
end
end
% s = 0
if options.RMS
Fx = zeros(data.Nkx,data.Nky,numel(x));
FAM = FaM(x,smin);
for ip_ = 1:Np
p_ = parray(ip_);
HH = Hp(p_,smin);
for ij_ = 1:Nj
j_ = jarray(ij_);
LL = Lj(j_,x);
HLF = HH.*LL.*FAM;
for ikx = 1:data.Nkx
for iky = 1:data.Nky
Fx(ikx,iky,:) = squeeze(Fx(ikx,iky,:))' + Napj_(ip_,ij_,ikx,iky)*HLF;
end
end
end
end
else
Fx = x*0;
FAM = FaM(smin,x);
for ip_ = 1:Np
p_ = parray(ip_);
HH = Hp(p_,smin);
for ij_ = 1:Nj
j_ = jarray(ij_);
LL = Lj(j_,x);
Fx = Fx + squeeze(Napj_(ip_,ij_,ikx0,iky0))*HH.*LL.*FAM;
end
end
end
Fs = real(Fs.*conj(Fs)); %|f_a|^2
Fx = real(Fx.*conj(Fx)); %|f_a|^2
if options.RMS
Fs = squeeze(sqrt(mean(mean(Fs,1),2))); %sqrt(<|f_a|^2>kx,ky)
Fx = squeeze(sqrt(mean(mean(Fx,1),2))); %sqrt(<|f_a|^2>kx,ky)
end
Fs = Fs./max(max(Fs));
Fx = Fx./max(max(Fx));
end