Skip to content
Snippets Groups Projects
fourier_mod.F90 5.91 KiB
MODULE fourier

  USE prec_const
  USE grid
  USE basic
  use, intrinsic :: iso_c_binding
  implicit none

  ! INCLUDE 'fftw3.f03'
  INCLUDE 'fftw3-mpi.f03'

  PRIVATE

  PUBLIC :: init_grid_distr_and_plans, poisson_bracket_and_sum, convolve_and_add, finalize_plans

  real(C_DOUBLE), pointer, PUBLIC            :: real_data_f(:,:), real_data_g(:,:), bracket_sum_r(:,:)
  complex(C_DOUBLE_complex), pointer, PUBLIC :: cmpx_data_f(:,:), cmpx_data_g(:,:), bracket_sum_c(:,:)
  type(C_PTR)                            :: cdatar_f, cdatar_g, cdatar_c
  type(C_PTR)                            :: cdatac_f, cdatac_g, cdatac_c
  type(C_PTR) , PUBLIC                   :: planf, planb
  integer(C_INTPTR_T)                    :: i, ix, iy
  integer(C_INTPTR_T), PUBLIC            :: alloc_local_1, alloc_local_2
  integer(C_INTPTR_T)                    :: NX_, NY_, NY_halved
  integer                                :: communicator
  ! many plan data variables
  integer(C_INTPTR_T) :: howmany=9 ! numer of eleemnt of the tensor
  integer :: rank=3                ! rank of the transform
  integer(C_INTPTR_T), dimension(2) :: fft_dims ! array containing data extent

  CONTAINS

  SUBROUTINE init_grid_distr_and_plans(Nx,Ny)
    IMPLICIT NONE

    INTEGER, INTENT(IN) :: Nx,Ny
    NX_ = Nx; NY_ = Ny
    NY_halved = NY_/2 + 1

    ! communicator = MPI_COMM_WORLD
    communicator = comm_ky

    !! Complex arrays F, G
    ! Compute the room to allocate
    alloc_local_1 = fftw_mpi_local_size_2d(NY_halved, NX_, communicator, local_nky, local_nky_offset)
    ! Initalize pointers to this room
    cdatac_f = fftw_alloc_complex(alloc_local_1)
    cdatac_g = fftw_alloc_complex(alloc_local_1)
    cdatac_c = fftw_alloc_complex(alloc_local_1)
    ! Initalize the arrays with the rooms pointed
    call c_f_pointer(cdatac_f,   cmpx_data_f, [NX_ ,local_nky])
    call c_f_pointer(cdatac_g,   cmpx_data_g, [NX_ ,local_nky])
    call c_f_pointer(cdatac_c, bracket_sum_c, [NX_ ,local_nky])

    !! Real arrays iFFT(F), iFFT(G)
    ! Compute the room to allocate
    alloc_local_2 = fftw_mpi_local_size_2d(NX_, NY_halved, communicator, local_nkx, local_nkx_offset)
    ! Initalize pointers to this room
    cdatar_f = fftw_alloc_real(2*alloc_local_2)
    cdatar_g = fftw_alloc_real(2*alloc_local_2)
    cdatar_c = fftw_alloc_real(2*alloc_local_2)
    ! Initalize the arrays with the rooms pointed
    call c_f_pointer(cdatar_f,   real_data_f, [2*(NY_/2  + 1),local_nkx])
    call c_f_pointer(cdatar_g,   real_data_g, [2*(NY_/2  + 1),local_nkx])
    call c_f_pointer(cdatar_c, bracket_sum_r, [2*(NY_/2  + 1),local_nkx])

    ! Plan Creation (out-of-place forward and backward FFT)
    planf = fftw_mpi_plan_dft_r2c_2D(NX_, NY_, real_data_f, cmpx_data_f, communicator,  ior(FFTW_MEASURE, FFTW_MPI_TRANSPOSED_OUT))
    planb = fftw_mpi_plan_dft_c2r_2D(NX_, NY_, cmpx_data_f, real_data_f, communicator,  ior(FFTW_MEASURE, FFTW_MPI_TRANSPOSED_IN))

   if ((.not. c_associated(planf)) .OR. (.not. c_associated(planb))) then
      IF (my_id .EQ. 0) write(*,*) "plan creation error!!"
      stop
   end if

  END SUBROUTINE init_grid_distr_and_plans


  !!! Compute the poisson bracket of [F,G] to real space
  !   - Compute the convolution using the convolution theorem
  SUBROUTINE poisson_bracket_and_sum( F_, G_)
    IMPLICIT NONE
    COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(ikys:ikye,ikxs:ikxe),&
                    INTENT(IN)  :: F_, G_ ! input fields
    ! First term df/dx x dg/dy
    DO ikx = ikxs, ikxe
      DO iky = ikys, ikye
        cmpx_data_f(ikx,iky-local_nky_offset) = &
              imagu*kxarray(ikx)*F_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
        cmpx_data_g(ikx,iky-local_nky_offset) = &
              imagu*kyarray(iky)*G_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
      ENDDO
    ENDDO
    call fftw_mpi_execute_dft_c2r(planb, cmpx_data_f, real_data_f)
    call fftw_mpi_execute_dft_c2r(planb, cmpx_data_g, real_data_g)
    bracket_sum_r = bracket_sum_r + real_data_f*inv_Ny*inv_Nx  * real_data_g*inv_Ny*inv_Nx
    ! Second term -df/dy x dg/dx
    DO ikx = ikxs, ikxe
      DO iky = ikys, ikye
        cmpx_data_f(ikx,iky-local_nky_offset) = &
              imagu*kyarray(iky)*F_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
        cmpx_data_g(ikx,iky-local_nky_offset) = &
              imagu*kxarray(ikx)*G_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
      ENDDO
    ENDDO
    call fftw_mpi_execute_dft_c2r(planb, cmpx_data_f, real_data_f)
    call fftw_mpi_execute_dft_c2r(planb, cmpx_data_g, real_data_g)
    bracket_sum_r = bracket_sum_r - real_data_f*inv_Ny*inv_Nx  * real_data_g*inv_Ny*inv_Nx
END SUBROUTINE poisson_bracket_and_sum

!!! Compute the poisson bracket of [F,G] to real space
!   - Compute the convolution using the convolution theorem
SUBROUTINE convolve_and_add( F_, G_)
  IMPLICIT NONE
  COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(ikys:ikye,ikxs:ikxe),&
                  INTENT(IN)  :: F_, G_ ! input fields
  ! First term df/dx x dg/dy
  DO ikx = ikxs, ikxe
    DO iky = ikys, ikye
      cmpx_data_f(ikx,iky-local_nky_offset) = F_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
      cmpx_data_g(ikx,iky-local_nky_offset) = G_(iky,ikx)*AA_x(ikx)*AA_y(iky) !Anti aliasing filter
    ENDDO
  ENDDO
  call fftw_mpi_execute_dft_c2r(planb, cmpx_data_f, real_data_f)
  call fftw_mpi_execute_dft_c2r(planb, cmpx_data_g, real_data_g)
  bracket_sum_r = bracket_sum_r + real_data_f*inv_Ny*inv_Nx  * real_data_g*inv_Ny*inv_Nx
END SUBROUTINE convolve_and_add


SUBROUTINE finalize_plans
  IMPLICIT NONE

  IF (my_id .EQ. 0) write(*,*) '..plan Destruction.'
  call fftw_destroy_plan(planb)
  call fftw_destroy_plan(planf)
  call fftw_mpi_cleanup()
  call fftw_free(cdatar_f)
  call fftw_free(cdatar_g)
  call fftw_free(cdatar_c)
  call fftw_free(cdatac_f)
  call fftw_free(cdatac_g)
  call fftw_free(cdatac_c)
END SUBROUTINE finalize_plans

END MODULE fourier