-
Antoine Cyril David Hoffmann authoredAntoine Cyril David Hoffmann authored
analysis_gyacomo.m 6.22 KiB
%% UNCOMMENT FOR TUTORIAL
% gyacomodir = pwd; gyacomodir = gyacomodir(1:end-2); % get code directory
% resdir = '.'; %Name of the directory where the results are located
% JOBNUMMIN = 00; JOBNUMMAX = 10;
%%
addpath(genpath([gyacomodir,'matlab'])) % ... add
addpath(genpath([gyacomodir,'matlab/plot'])) % ... add
addpath(genpath([gyacomodir,'matlab/compute'])) % ... add
addpath(genpath([gyacomodir,'matlab/load'])) % ... add
%% Load the results
LOCALDIR = [gyacomodir,resdir,'/'];
MISCDIR = ['/misc/gyacomo_outputs/',resdir,'/']; %For long term storage
system(['mkdir -p ',MISCDIR]);
system(['mkdir -p ',LOCALDIR]);
CMD = ['rsync ', LOCALDIR,'outputs* ',MISCDIR]; disp(CMD);
system(CMD);
% Load outputs from jobnummin up to jobnummax
data = compile_results(MISCDIR,JOBNUMMIN,JOBNUMMAX); %Compile the results from first output found to JOBNUMMAX if existing
data.localdir = LOCALDIR;
data.FIGDIR = LOCALDIR;
%% PLOTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
default_plots_options
disp('Plots')
FMT = '.fig';
if 1
%% Space time diagramm (fig 11 Ivanov 2020)
% data.scale = 1;%/(data.Nx*data.Ny)^2;
i_ = 19; disp([num2str(data.NU_EVOL(i_)),' ',num2str(data.NU_EVOL(i_+1))])
options.TAVG_0 = data.TJOB_SE(i_);%0.4*data.Ts3D(end);
options.TAVG_1 = data.TJOB_SE(i_+1);%0.9*data.Ts3D(end); % Averaging times duration
options.NCUT = 4; % Number of cuts for averaging and error estimation
options.NMVA = 100; % Moving average for time traces
% options.ST_FIELD = '\Gamma_x'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x)
% options.ST_FIELD = '\phi'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x)
% options.INTERP = 1;
fig = plot_radial_transport_and_spacetime(data,options);
save_figure(data,fig,'.png')
end
if 0
%% statistical transport averaging
options.T = [200 400];
fig = statistical_transport_averaging(data,options);
end
if 0
%% MOVIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Options
options.INTERP = 1;
options.POLARPLOT = 0;
% options.NAME = '\phi';
options.NAME = '\omega_z';
% options.NAME = 'N_i^{00}';
% options.NAME = 'v_y';
% options.NAME = 'n_i^{NZ}';
% options.NAME = '\Gamma_x';
% options.NAME = 'n_i';
options.PLAN = 'xy';
% options.NAME = 'f_i';
% options.PLAN = 'sx';
% options.COMP = 'avg';
% options.TIME = data.Ts5D(end-30:end);
% options.TIME = data.Ts3D;
options.TIME = [100:1:300];
data.EPS = 0.1;
data.a = data.EPS * 2000;
options.RESOLUTION = 256;
create_film(data,options,'.avi')
end
if 1
%% 2D snapshots
% Options
options.INTERP = 1;
options.POLARPLOT = 0;
options.AXISEQUAL = 1;
options.NAME = '\phi';
% options.NAME = '\psi';
% options.NAME = 'n_i';
% options.NAME = 'N_i^{00}';
% options.NAME = 'T_i';
% options.NAME = '\Gamma_x';
% options.NAME = 'k^2n_e';
options.PLAN = 'xy';
% options.NAME 'f_i';
% options.PLAN = 'sx';
options.COMP = 'avg';
options.TIME = [200];
data.a = data.EPS * 2e3;
fig = photomaton(data,options);
% save_figure(data,fig)
end
if 0
%% 3D plot on the geometry
options.INTERP = 0;
options.NAME = '\phi';
options.PLANES = [1];
options.TIME = [30];
options.PLT_MTOPO = 1;
options.PLT_FTUBE = 0;
data.EPS = 0.4;
data.rho_o_R = 3e-3; % Sound larmor radius over Machine size ratio
fig = show_geometry(data,options);
save_figure(data,fig,'.png')
end
if 0
%% Kinetic distribution function sqrt(<f_a^2>xy) (GENE vsp)
options.SPAR = linspace(-3,3,32)+(6/127/2);
options.XPERP = linspace( 0,6,32);
% options.SPAR = gene_data.vp';
% options.XPERP = gene_data.mu';
options.iz = 'avg';
options.T = [250 600];
options.PLT_FCT = 'pcolor';
options.ONED = 0;
options.non_adiab = 0;
options.SPECIE = 'i';
options.RMS = 1; % Root mean square i.e. sqrt(sum_k|f_k|^2) as in Gene
fig = plot_fa(data,options);
% save_figure(data,fig,'.png')
end
if 0
%% Hermite-Laguerre spectrum
% options.TIME = 'avg';
options.P2J = 0;
options.ST = 1;
options.PLOT_TYPE = 'space-time';
options.NORMALIZED = 0;
options.JOBNUM = 0;
options.TIME = [1000];
options.specie = 'i';
options.compz = 'avg';
fig = show_moments_spectrum(data,options);
% fig = show_napjz(data,options);
% save_figure(data,fig,'.png');
end
if 0
%% Time averaged spectrum
options.TIME = [300 600];
options.NORM =1;
options.NAME = '\phi';
% options.NAME = 'N_i^{00}';
% options.NAME ='\Gamma_x';
options.PLAN = 'kxky';
options.COMPZ = 'avg';
options.OK = 0;
options.COMPXY = 'avg'; % avg/sum/max/zero/ 2D plot otherwise
options.COMPT = 'avg';
options.PLOT = 'semilogy';
fig = spectrum_1D(data,options);
% save_figure(data,fig,'.png')
end
if 0
%% 1D real plot
options.TIME = [50 100 200];
options.NORM = 0;
options.NAME = '\phi';
% options.NAME = 'n_i';
% options.NAME ='\Gamma_x';
% options.NAME ='s_y';
options.COMPX = 'avg';
options.COMPY = 'avg';
options.COMPZ = 1;
options.COMPT = 1;
options.MOVMT = 1;
fig = real_plot_1D(data,options);
% save_figure(data,fig,'.png')
end
if 0
%% Mode evolution
options.NORMALIZED = 0;
options.K2PLOT = [0.1 0.2 0.3 0.4];
options.TIME = [00:1200];
options.NMA = 1;
options.NMODES = 5;
options.iz = 'avg';
fig = mode_growth_meter(data,options);
save_figure(data,fig,'.png')
end
if 0
%% ZF caracteristics (space time diagrams)
TAVG_0 = 1200; TAVG_1 = 1500; % Averaging times duration
% chose your field to plot in spacetime diag (uzf,szf,Gx)
fig = ZF_spacetime(data,TAVG_0,TAVG_1);
save_figure(data,fig,'.png')
end
if 0
%% Metric infos
fig = plot_metric(data);
end
if 0
%% linear growth rate for 3D fluxtube
trange = [0 100];
nplots = 1;
lg = compute_fluxtube_growth_rate(data,trange,nplots);
end
if 0
%% linear growth rate for 3D Zpinch
trange = [5 15];
options.keq0 = 1; % chose to plot planes at k=0 or max
options.kxky = 1;
options.kzkx = 0;
options.kzky = 1;
[lg, fig] = compute_3D_zpinch_growth_rate(data,trange,options);
save_figure(data,fig,'.png')
end