-
Antoine Cyril David Hoffmann authoredAntoine Cyril David Hoffmann authored
processing_mod.F90 31.45 KiB
MODULE processing
USE basic
USE prec_const
USE grid
implicit none
REAL(dp), PUBLIC, PROTECTED :: pflux_ri, gflux_ri, pflux_re, gflux_re
REAL(dp), PUBLIC, PROTECTED :: hflux_xi, hflux_xe
PUBLIC :: compute_nadiab_moments_z_gradients_and_interp
PUBLIC :: compute_density, compute_upar, compute_uperp
PUBLIC :: compute_Tpar, compute_Tperp, compute_fluid_moments
PUBLIC :: compute_radial_ion_transport, compute_radial_electron_transport
PUBLIC :: compute_radial_ion_heatflux, compute_radial_electron_heatflux
PUBLIC :: compute_Napjz_spectrum
CONTAINS
! 1D diagnostic to compute the average radial particle transport <n_i v_ExB_x>_xyz
SUBROUTINE compute_radial_ion_transport
USE fields, ONLY : moments_i, phi, psi
USE array, ONLY : kernel_i
USE geometry, ONLY : Jacobian, iInt_Jacobian
USE time_integration, ONLY : updatetlevel
USE calculus, ONLY : simpson_rule_z
USE model, ONLY : sqrt_tau_o_sigma_i, EM
IMPLICIT NONE
COMPLEX(dp) :: pflux_local, gflux_local, integral
REAL(dp) :: ky_, buffer(1:2)
INTEGER :: i_, root
COMPLEX(dp), DIMENSION(izgs:izge) :: integrant
pflux_local = 0._dp ! particle flux
gflux_local = 0._dp ! gyrocenter flux
integrant = 0._dp ! auxiliary variable for z integration
!!---------- Gyro center flux (drift kinetic) ------------
! Electrostatic part
IF(CONTAINS_ip0_i) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant(izgs:izge) = integrant(izgs:izge) &
+moments_i(ip0_i,ij0_i,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*CONJG(phi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDIF
! Electromagnetic part
IF( EM .AND. CONTAINS_ip1_i ) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant(izgs:izge) = integrant(izgs:izge)&
-sqrt_tau_o_sigma_i*moments_i(ip1_i,ij0_i,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*CONJG(psi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDIF
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
! Get process local gyrocenter flux
gflux_local = integral*iInt_Jacobian
!
integrant = 0._dp ! reset auxiliary variable
!!---------- Particle flux (gyrokinetic) ------------
! Electrostatic part
IF(CONTAINS_ip0_i) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO ij = ijs_i, ije_i
integrant(izgs:izge) = integrant(izgs:izge)&
+moments_i(ip0_i,ij,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*kernel_i(ij,iky,ikx,izgs:izge,0)*CONJG(phi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDDO
ENDIF
! Electromagnetic part
IF( EM .AND. CONTAINS_ip1_i ) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant = 0._dp ! auxiliary variable for z integration
DO ij = ijs_i, ije_i
integrant(izgs:izge) = integrant(izgs:izge)&
-sqrt_tau_o_sigma_i*moments_i(ip1_i,ij,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*kernel_i(ij,iky,ikx,izgs:izge,0)*CONJG(psi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDDO
ENDIF
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
! Get process local particle flux
pflux_local = integral*iInt_Jacobian
!!!!---------- Sum over all processes ----------
buffer(1) = 2._dp*REAL(gflux_local,dp)
buffer(2) = 2._dp*REAL(pflux_local,dp)
root = 0
!Gather manually among the rank_p=0 processes and perform the sum
gflux_ri = 0
pflux_ri = 0
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer, 2 , MPI_DOUBLE_PRECISION, root, 1234, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer, 2 , MPI_DOUBLE_PRECISION, i_, 1234, comm_ky, MPI_STATUS_IGNORE, ierr)
gflux_ri = gflux_ri + buffer(1)
pflux_ri = pflux_ri + buffer(2)
ENDDO
ENDIF
ELSE
gflux_ri = gflux_local
pflux_ri = pflux_local
ENDIF
! if(my_id .eq. 0) write(*,*) 'pflux_ri = ',pflux_ri
END SUBROUTINE compute_radial_ion_transport
! 1D diagnostic to compute the average radial particle transport <n_e v_ExB_x>_xyz
SUBROUTINE compute_radial_electron_transport
USE fields, ONLY : moments_e, phi, psi
USE array, ONLY : kernel_e
USE geometry, ONLY : Jacobian, iInt_Jacobian
USE time_integration, ONLY : updatetlevel
USE calculus, ONLY : simpson_rule_z
USE model, ONLY : sqrt_tau_o_sigma_e, EM
IMPLICIT NONE
COMPLEX(dp) :: pflux_local, gflux_local, integral
REAL(dp) :: ky_, buffer(1:2)
INTEGER :: i_, root
COMPLEX(dp), DIMENSION(izgs:izge) :: integrant
pflux_local = 0._dp ! particle flux
gflux_local = 0._dp ! gyrocenter flux
integrant = 0._dp ! auxiliary variable for z integration
!!---------- Gyro center flux (drift kinetic) ------------
! Electrostatic part
IF(CONTAINS_ip0_e) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant(izgs:izge) = integrant(izgs:izge) &
+moments_e(ip0_e,ij0_e,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*CONJG(phi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDIF
! Electromagnetic part
IF( EM .AND. CONTAINS_ip1_e ) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant(izgs:izge) = integrant(izgs:izge)&
-sqrt_tau_o_sigma_e*moments_e(ip1_e,ij0_e,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*CONJG(psi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDIF
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
! Get process local gyrocenter flux
gflux_local = integral*iInt_Jacobian
!
integrant = 0._dp ! reset auxiliary variable
!!---------- Particle flux (gyrokinetic) ------------
! Electrostatic part
IF(CONTAINS_ip0_e) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO ij = ijs_e, ije_e
integrant(izgs:izge) = integrant(izgs:izge)&
+moments_e(ip0_e,ij,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*kernel_e(ij,iky,ikx,izgs:izge,0)*CONJG(phi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDDO
ENDIF
! Electromagnetic part
IF( EM .AND. CONTAINS_ip1_e ) THEN
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
integrant = 0._dp ! auxiliary variable for z integration
DO ij = ijs_e, ije_e
integrant(izgs:izge) = integrant(izgs:izge)&
-sqrt_tau_o_sigma_e*moments_e(ip1_e,ij,iky,ikx,izgs:izge,updatetlevel)&
*imagu*ky_*kernel_e(ij,iky,ikx,izgs:izge,0)*CONJG(psi(iky,ikx,izgs:izge))
ENDDO
ENDDO
ENDDO
ENDIF
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
! Get process local particle flux
pflux_local = integral*iInt_Jacobian
!!!!---------- Sum over all processes ----------
buffer(1) = 2._dp*REAL(gflux_local,dp)
buffer(2) = 2._dp*REAL(pflux_local,dp)
root = 0
!Gather manually among the rank_p=0 processes and perform the sum
gflux_re = 0
pflux_re = 0
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer, 2 , MPI_DOUBLE_PRECISION, root, 1234, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer, 2 , MPI_DOUBLE_PRECISION, i_, 1234, comm_ky, MPI_STATUS_IGNORE, ierr)
gflux_re = gflux_re + buffer(1)
pflux_re = pflux_re + buffer(2)
ENDDO
ENDIF
ELSE
gflux_re = gflux_local
pflux_re = pflux_local
ENDIF
END SUBROUTINE compute_radial_electron_transport
! 1D diagnostic to compute the average radial particle transport <T_i v_ExB_x>_xyz
SUBROUTINE compute_radial_ion_heatflux
USE fields, ONLY : moments_i, phi, psi
USE array, ONLY : kernel_i!, HF_phi_correction_operator
USE geometry, ONLY : Jacobian, iInt_Jacobian
USE time_integration, ONLY : updatetlevel
USE calculus, ONLY : simpson_rule_z
USE model, ONLY : tau_i, sqrt_tau_o_sigma_i, EM
IMPLICIT NONE
COMPLEX(dp) :: hflux_local, integral
REAL(dp) :: ky_, buffer(1:2), n_dp
INTEGER :: i_, root, in
COMPLEX(dp), DIMENSION(izgs:izge) :: integrant ! charge density q_a n_a
hflux_local = 0._dp ! heat flux
integrant = 0._dp ! z integration auxiliary variable
!!----------------ELECTROSTATIC CONTRIBUTION---------------------------
IF(CONTAINS_ip0_i .AND. CONTAINS_ip2_i) THEN
! Loop to compute gamma_kx = sum_ky sum_j -i k_z Kernel_j Ni00 * phi
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO in = ijs_i, ije_i
n_dp = jarray_i(in)
integrant(izgs:izge) = integrant(izgs:izge) + tau_i*imagu*ky_*CONJG(phi(iky,ikx,izgs:izge))&
*kernel_i(in,iky,ikx,izgs:izge,0)*(&
0.5_dp*SQRT2*moments_i(ip2_i,in ,iky,ikx,izgs:izge,updatetlevel)&
+(2._dp*n_dp + 1.5_dp)*moments_i(ip0_i,in ,iky,ikx,izgs:izge,updatetlevel)&
-(n_dp+1._dp)*moments_i(ip0_i,in+1,iky,ikx,izgs:izge,updatetlevel)&
-n_dp*moments_i(ip0_i,in-1,iky,ikx,izgs:izge,updatetlevel))
ENDDO
ENDDO
ENDDO
ENDIF
IF(EM .AND. CONTAINS_ip1_i .AND. CONTAINS_ip3_i) THEN
!!----------------ELECTROMAGNETIC CONTRIBUTION--------------------
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO in = ijs_i, ije_i
n_dp = jarray_i(in)
integrant(izgs:izge) = integrant(izgs:izge) &
+tau_i*sqrt_tau_o_sigma_i*imagu*ky_*CONJG(psi(iky,ikx,izgs:izge))&
*kernel_i(in,iky,ikx,izgs:izge,0)*(&
0.5_dp*SQRT2*SQRT3*moments_i(ip3_i,in ,iky,ikx,izgs:izge,updatetlevel)&
+1.5_dp*moments_i(ip1_i,in ,iky,ikx,izgs:izge,updatetlevel)&
+(2._dp*n_dp+1._dp)*moments_i(ip1_i,in ,iky,ikx,izgs:izge,updatetlevel)&
-(n_dp+1._dp)*moments_i(ip1_i,in+1,iky,ikx,izgs:izge,updatetlevel)&
-n_dp*moments_i(ip1_i,in-1,iky,ikx,izgs:izge,updatetlevel))
ENDDO
ENDDO
ENDDO
ENDIF
! Add polarisation contribution
! integrant(izgs:izge) = integrant(izgs:izge) + tau_i*imagu*ky_&
! *CONJG(phi(iky,ikx,izgs:izge))*phi(iky,ikx,izgs:izge) * HF_phi_correction_operator(iky,ikx,izgs:izge)
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
hflux_local = hflux_local + integral*iInt_Jacobian
! Double it for taking into account the other half plane
buffer(2) = 2._dp*REAL(hflux_local,dp)
root = 0
!Gather manually among the rank_p=0 processes and perform the sum
hflux_xi = 0
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer, 2 , MPI_DOUBLE_PRECISION, root, 1234, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer, 2 , MPI_DOUBLE_PRECISION, i_, 1234, comm_ky, MPI_STATUS_IGNORE, ierr)
hflux_xi = hflux_xi + buffer(2)
ENDDO
ENDIF
ELSE
hflux_xi = hflux_local
ENDIF
END SUBROUTINE compute_radial_ion_heatflux
! 1D diagnostic to compute the average radial particle transport <T_e v_ExB_x>_xyz
SUBROUTINE compute_radial_electron_heatflux
USE fields, ONLY : moments_e, phi, psi
USE array, ONLY : kernel_e!, HF_phi_correction_operator
USE geometry, ONLY : Jacobian, iInt_Jacobian
USE time_integration, ONLY : updatetlevel
USE calculus, ONLY : simpson_rule_z
USE model, ONLY : tau_e, sqrt_tau_o_sigma_e, EM
IMPLICIT NONE
COMPLEX(dp) :: hflux_local, integral
REAL(dp) :: ky_, buffer(1:2), n_dp
INTEGER :: i_, root, in
COMPLEX(dp), DIMENSION(izgs:izge) :: integrant ! charge density q_a n_a
hflux_local = 0._dp ! heat flux
integrant = 0._dp ! z integration auxiliary variable
!!----------------ELECTROSTATIC CONTRIBUTION---------------------------
IF(CONTAINS_ip0_e .AND. CONTAINS_ip2_e) THEN
! Loop to compute gamma_kx = sum_ky sum_j -i k_z Kernel_j Ni00 * phi
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO in = ijs_e, ije_e
n_dp = jarray_e(in)
integrant(izgs:izge) = integrant(izgs:izge) + tau_e*imagu*ky_*CONJG(phi(iky,ikx,izgs:izge))&
*kernel_e(in,iky,ikx,izgs:izge,0)*(&
0.5_dp*SQRT2*moments_e(ip2_e,in ,iky,ikx,izgs:izge,updatetlevel)&
+(2._dp*n_dp + 1.5_dp)*moments_e(ip0_e,in ,iky,ikx,izgs:izge,updatetlevel)&
-(n_dp+1._dp)*moments_e(ip0_e,in+1,iky,ikx,izgs:izge,updatetlevel)&
-n_dp*moments_e(ip0_e,in-1,iky,ikx,izgs:izge,updatetlevel))
ENDDO
ENDDO
ENDDO
ENDIF
IF(EM .AND. CONTAINS_ip1_e .AND. CONTAINS_ip3_e) THEN
!!----------------ELECTROMAGNETIC CONTRIBUTION--------------------
DO iky = ikys,ikye
ky_ = kyarray(iky)
DO ikx = ikxs,ikxe
DO in = ijs_e, ije_e
n_dp = jarray_e(in)
integrant(izgs:izge) = integrant(izgs:izge) &
+tau_e*sqrt_tau_o_sigma_e*imagu*ky_*CONJG(psi(iky,ikx,izgs:izge))&
*kernel_e(in,iky,ikx,izgs:izge,0)*(&
0.5_dp*SQRT2*SQRT3*moments_e(ip3_e,in ,iky,ikx,izgs:izge,updatetlevel)&
+1.5_dp*CONJG(moments_e(ip1_e,in ,iky,ikx,izgs:izge,updatetlevel))& !?????
+(2._dp*n_dp+1._dp)*moments_e(ip1_e,in ,iky,ikx,izgs:izge,updatetlevel)&
-(n_dp+1._dp)*moments_e(ip1_e,in+1,iky,ikx,izgs:izge,updatetlevel)&
-n_dp*moments_e(ip1_e,in-1,iky,ikx,izgs:izge,updatetlevel))
ENDDO
ENDDO
ENDDO
ENDIF
! Add polarisation contribution
! integrant(izs:ize) = integrant(izs:ize) + tau_e*imagu*ky_&
! *CONJG(phi(iky,ikx,izs:ize))*phi(iky,ikx,izs:ize) * HF_phi_correction_operator(iky,ikx,izs:ize)
! Integrate over z
integrant(izgs:izge) = Jacobian(izgs:izge,0)*integrant(izgs:izge)
call simpson_rule_z(integrant,integral)
hflux_local = hflux_local + integral*iInt_Jacobian
! Double it for taking into account the other half plane
buffer(2) = 2._dp*REAL(hflux_local,dp)
root = 0
!Gather manually among the rank_p=0 processes and perform the sum
hflux_xe = 0
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer, 2 , MPI_DOUBLE_PRECISION, root, 1234, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer, 2 , MPI_DOUBLE_PRECISION, i_, 1234, comm_ky, MPI_STATUS_IGNORE, ierr)
hflux_xe = hflux_xe + buffer(2)
ENDDO
ENDIF
ELSE
hflux_xe = hflux_local
ENDIF
END SUBROUTINE compute_radial_electron_heatflux
SUBROUTINE compute_nadiab_moments_z_gradients_and_interp
! evaluate the non-adiabatique ion moments
!
! n_{pi} = N^{pj} + kernel(j) /tau_i phi delta_p0
!
USE fields, ONLY : moments_i, moments_e, phi, psi
USE array, ONLY : kernel_e, kernel_i, nadiab_moments_e, nadiab_moments_i, &
ddz_nepj, ddzND_Nepj, interp_nepj,&
ddz_nipj, ddzND_Nipj, interp_nipj!, ddz_phi
USE time_integration, ONLY : updatetlevel
USE model, ONLY : qe_taue, qi_taui,q_o_sqrt_tau_sigma_e, q_o_sqrt_tau_sigma_i, &
KIN_E, CLOS, beta, HDz_h
USE calculus, ONLY : grad_z, grad_z2, grad_z4, interp_z
IMPLICIT NONE
INTEGER :: eo, p_int, j_int
CALL cpu_time(t0_process)
! Electron non adiab moments
IF(KIN_E) THEN
DO ip=ipgs_e,ipge_e
IF(parray_e(ip) .EQ. 0) THEN
DO ij=ijgs_e,ijge_e
nadiab_moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) &
+ qe_taue*kernel_e(ij,ikys:ikye,ikxs:ikxe,izgs:izge,0)*phi(ikys:ikye,ikxs:ikxe,izgs:izge)
ENDDO
ELSEIF( (parray_e(ip) .EQ. 1) .AND. (beta .GT. 0) ) THEN
DO ij=ijgs_e,ijge_e
nadiab_moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) &
- q_o_sqrt_tau_sigma_e*kernel_e(ij,ikys:ikye,ikxs:ikxe,izgs:izge,0)*psi(ikys:ikye,ikxs:ikxe,izgs:izge)
ENDDO
ELSE
DO ij=ijgs_e,ijge_e
nadiab_moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_e(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel)
ENDDO
ENDIF
ENDDO
ENDIF
! Ions non adiab moments
DO ip=ipgs_i,ipge_i
IF(parray_i(ip) .EQ. 0) THEN
DO ij=ijgs_i,ijge_i
nadiab_moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) &
+ qi_taui*kernel_i(ij,ikys:ikye,ikxs:ikxe,izgs:izge,0)*phi(ikys:ikye,ikxs:ikxe,izgs:izge)
ENDDO
ELSEIF( (parray_i(ip) .EQ. 1) .AND. (beta .GT. 0) ) THEN
DO ij=ijgs_i,ijge_i
nadiab_moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel) &
- q_o_sqrt_tau_sigma_i*kernel_i(ij,ikys:ikye,ikxs:ikxe,izgs:izge,0)*psi(ikys:ikye,ikxs:ikxe,izgs:izge)
ENDDO
ELSE
DO ij=ijgs_i,ijge_i
nadiab_moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge) = moments_i(ip,ij,ikys:ikye,ikxs:ikxe,izgs:izge,updatetlevel)
ENDDO
ENDIF
ENDDO
!! Ensure to kill the moments too high if closue option is set to 1
IF(CLOS .EQ. 1) THEN
IF(KIN_E) THEN
DO ip=ipgs_e,ipge_e
p_int = parray_e(ip)
DO ij=ijgs_e,ijge_e
j_int = jarray_e(ij)
IF(p_int+2*j_int .GT. dmaxe) &
nadiab_moments_e(ip,ij,:,:,:) = 0._dp
ENDDO
ENDDO
ENDIF
DO ip=ipgs_i,ipge_i
p_int = parray_i(ip)
DO ij=ijgs_i,ijge_i
j_int = jarray_i(ij)
IF(p_int+2*j_int .GT. dmaxi) &
nadiab_moments_i(ip,ij,:,:,:) = 0._dp
ENDDO
ENDDO
ENDIF
!------------- INTERP AND GRADIENTS ALONG Z ----------------------------------
IF (KIN_E) THEN
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO ij = ijgs_e,ijge_e
DO ip = ipgs_e,ipge_e
p_int = parray_e(ip)
eo = MODULO(p_int,2) ! Indicates if we are on even or odd z grid
! Compute z derivatives
CALL grad_z(eo,nadiab_moments_e(ip,ij,iky,ikx,izgs:izge), ddz_nepj(ip,ij,iky,ikx,izs:ize))
! Parallel hyperdiffusion
IF (HDz_h) THEN
CALL grad_z4(nadiab_moments_e(ip,ij,iky,ikx,izgs:izge),ddzND_Nepj(ip,ij,iky,ikx,izs:ize))
ELSE
CALL grad_z4(moments_e(ip,ij,iky,ikx,izgs:izge,updatetlevel),ddzND_Nepj(ip,ij,iky,ikx,izs:ize))
ENDIF
! Compute even odd grids interpolation
CALL interp_z(eo,nadiab_moments_e(ip,ij,iky,ikx,izgs:izge), interp_nepj(ip,ij,iky,ikx,izs:ize))
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO ij = ijgs_i,ijge_i
DO ip = ipgs_i,ipge_i
p_int = parray_i(ip)
eo = MODULO(p_int,2) ! Indicates if we are on even or odd z grid
! Compute z first derivative
CALL grad_z(eo,nadiab_moments_i(ip,ij,iky,ikx,izgs:izge), ddz_nipj(ip,ij,iky,ikx,izs:ize))
! Parallel numerical diffusion
IF (HDz_h) THEN
CALL grad_z4(nadiab_moments_i(ip,ij,iky,ikx,izgs:izge),ddzND_Nipj(ip,ij,iky,ikx,izs:ize))
ELSE
CALL grad_z4(moments_i(ip,ij,iky,ikx,izgs:izge,updatetlevel),ddzND_Nipj(ip,ij,iky,ikx,izs:ize))
ENDIF
! Compute even odd grids interpolation
CALL interp_z(eo,nadiab_moments_i(ip,ij,iky,ikx,izgs:izge), interp_nipj(ip,ij,iky,ikx,izs:ize))
ENDDO
ENDDO
ENDDO
ENDDO
! Phi parallel gradient (not implemented fully, should be negligible)
! DO ikx = ikxs,ikxe
! DO iky = ikys,ikye
! CALL grad_z(0,phi(iky,ikx,izgs:izge), ddz_phi(iky,ikx,izs:ize))
! ENDDO
! ENDDO
! Execution time end
CALL cpu_time(t1_process)
tc_process = tc_process + (t1_process - t0_process)
END SUBROUTINE compute_nadiab_moments_z_gradients_and_interp
SUBROUTINE compute_Napjz_spectrum
USE fields, ONLY : moments_e, moments_i
USE model, ONLY : KIN_E
USE array, ONLY : Nipjz, Nepjz
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
REAL(dp), DIMENSION(ips_e:ipe_e,ijs_e:ije_e,izs:ize) :: local_sum_e,global_sum_e, buffer_e
REAL(dp), DIMENSION(ips_i:ipe_i,ijs_i:ije_i,izs:ize) :: local_sum_i,global_sum_i, buffer_i
INTEGER :: i_, root, count
root = 0
! Electron moments spectrum
IF (KIN_E) THEN
! build local sum
local_sum_e = 0._dp
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
local_sum_e(ips_e:ipe_e,ijs_e:ije_e,izs:ize) = local_sum_e(ips_e:ipe_e,ijs_e:ije_e,izs:ize) + &
REAL(moments_e(ips_e:ipe_e,ijs_e:ije_e,iky,ikx,izs:ize,updatetlevel)&
* CONJG(moments_e(ips_e:ipe_e,ijs_e:ije_e,iky,ikx,izs:ize,updatetlevel)),dp)
ENDDO
ENDDO
! sum reduction
buffer_e = local_sum_e
global_sum_e = 0._dp
count = (ipe_e-ips_e+1)*(ije_e-ijs_e+1)*(ize-izs+1)
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer_e, count , MPI_DOUBLE_COMPLEX, root, 1234, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer_e, count , MPI_DOUBLE_COMPLEX, i_, 1234, comm_ky, MPI_STATUS_IGNORE, ierr)
global_sum_e = global_sum_e + buffer_e
ENDDO
ENDIF
ELSE
global_sum_e = local_sum_e
ENDIF
Nepjz = global_sum_e
ENDIF
! Ion moment spectrum
! build local sum
local_sum_i = 0._dp
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
local_sum_i(ips_i:ipe_i,ijs_i:ije_i,izs:ize) = local_sum_i(ips_i:ipe_i,ijs_i:ije_i,izs:ize) + &
(moments_i(ips_i:ipe_i,ijs_i:ije_i,iky,ikx,izs:ize,updatetlevel) &
* CONJG(moments_i(ips_i:ipe_i,ijs_i:ije_i,iky,ikx,izs:ize,updatetlevel)))
ENDDO
ENDDO
! sum reduction
buffer_i = local_sum_i
global_sum_i = 0._dp
count = (ipe_i-ips_i+1)*(ije_i-ijs_i+1)*(ize-izs+1)
IF (num_procs_ky .GT. 1) THEN
!! Everyone sends its local_sum to root = 0
IF (rank_ky .NE. root) THEN
CALL MPI_SEND(buffer_i, count , MPI_DOUBLE_PRECISION, root, 5678, comm_ky, ierr)
ELSE
! Recieve from all the other processes
DO i_ = 0,num_procs_ky-1
IF (i_ .NE. rank_ky) &
CALL MPI_RECV(buffer_i, count , MPI_DOUBLE_PRECISION, i_, 5678, comm_ky, MPI_STATUS_IGNORE, ierr)
global_sum_i = global_sum_i + buffer_i
ENDDO
ENDIF
ELSE
global_sum_i = local_sum_i
ENDIF
Nipjz = global_sum_i
END SUBROUTINE compute_Napjz_spectrum
!_____________________________________________________________________________!
!!!!! FLUID MOMENTS COMPUTATIONS !!!!!
! Compute the 2D particle density for electron and ions (sum over Laguerre)
SUBROUTINE compute_density
USE array, ONLY : dens_e, dens_i, kernel_e, kernel_i
USE model, ONLY : KIN_E
USE fields, ONLY : moments_e, moments_i
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
COMPLEX(dp) :: dens
IF ( CONTAINS_ip0_e .AND. CONTAINS_ip0_i ) THEN
! Loop to compute dens_i = sum_j kernel_j Ni0j at each k
DO iz = izs,ize
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
IF(KIN_E) THEN
! electron density
dens = 0._dp
DO ij = ijs_e, ije_e
dens = dens + kernel_e(ij,iky,ikx,iz,0) * moments_e(ip0_e,ij,iky,ikx,iz,updatetlevel)
ENDDO
dens_e(iky,ikx,iz) = dens
ENDIF
! ion density
dens = 0._dp
DO ij = ijs_i, ije_i
dens = dens + kernel_i(ij,iky,ikx,iz,0) * moments_i(ip0_e,ij,iky,ikx,iz,updatetlevel)
ENDDO
dens_i(iky,ikx,iz) = dens
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE compute_density
! Compute the 2D particle fluid perp velocity for electron and ions (sum over Laguerre)
SUBROUTINE compute_uperp
USE array, ONLY : uper_e, uper_i, kernel_e, kernel_i
USE model, ONLY : KIN_E
USE fields, ONLY : moments_e, moments_i
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
COMPLEX(dp) :: uperp
IF ( CONTAINS_ip0_e .AND. CONTAINS_ip0_i ) THEN
DO iz = izs,ize
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
IF(KIN_E) THEN
! electron
uperp = 0._dp
DO ij = ijs_e, ije_e
uperp = uperp + kernel_e(ij,iky,ikx,iz,0) *&
0.5_dp*(moments_e(ip0_e,ij,iky,ikx,iz,updatetlevel) - moments_e(ip0_e,ij-1,iky,ikx,iz,updatetlevel))
ENDDO
uper_e(iky,ikx,iz) = uperp
ENDIF
! ion
uperp = 0._dp
DO ij = ijs_i, ije_i
uperp = uperp + kernel_i(ij,iky,ikx,iz,0) *&
0.5_dp*(moments_i(ip0_i,ij,iky,ikx,iz,updatetlevel) - moments_i(ip0_i,ij-1,iky,ikx,iz,updatetlevel))
ENDDO
uper_i(iky,ikx,iz) = uperp
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE compute_uperp
! Compute the 2D particle fluid par velocity for electron and ions (sum over Laguerre)
SUBROUTINE compute_upar
USE array, ONLY : upar_e, upar_i, kernel_e, kernel_i
USE model, ONLY : KIN_E
USE fields, ONLY : moments_e, moments_i
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
COMPLEX(dp) :: upar
IF ( CONTAINS_ip1_e .AND. CONTAINS_ip1_i ) THEN
DO iz = izs,ize
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
IF(KIN_E) THEN
! electron
upar = 0._dp
DO ij = ijs_e, ije_e
upar = upar + kernel_e(ij,iky,ikx,iz,1)*moments_e(ip1_e,ij,iky,ikx,iz,updatetlevel)
ENDDO
upar_e(iky,ikx,iz) = upar
ENDIF
! ion
upar = 0._dp
DO ij = ijs_i, ije_i
upar = upar + kernel_i(ij,iky,ikx,iz,1)*moments_i(ip1_i,ij,iky,ikx,iz,updatetlevel)
ENDDO
upar_i(iky,ikx,iz) = upar
ENDDO
ENDDO
ENDDO
ELSE
IF(KIN_E)&
upar_e = 0
upar_i = 0
ENDIF
END SUBROUTINE compute_upar
! Compute the 2D particle temperature for electron and ions (sum over Laguerre)
SUBROUTINE compute_tperp
USE array, ONLY : Tper_e, Tper_i, kernel_e, kernel_i
USE model, ONLY : KIN_E
USE fields, ONLY : moments_e, moments_i
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
REAL(dp) :: j_dp
COMPLEX(dp) :: Tperp
IF ( CONTAINS_ip0_e .AND. CONTAINS_ip0_i .AND. &
CONTAINS_ip2_e .AND. CONTAINS_ip2_i ) THEN
! Loop to compute T = 1/3*(Tpar + 2Tperp)
DO iz = izs,ize
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
! electron temperature
IF(KIN_E) THEN
Tperp = 0._dp
DO ij = ijs_e, ije_e
j_dp = REAL(ij-1,dp)
Tperp = Tperp + kernel_e(ij,iky,ikx,iz,0)*&
((2_dp*j_dp+1)*moments_e(ip0_e,ij ,iky,ikx,iz,updatetlevel)&
-j_dp *moments_e(ip0_e,ij-1,iky,ikx,iz,updatetlevel)&
-j_dp+1 *moments_e(ip0_e,ij+1,iky,ikx,iz,updatetlevel))
ENDDO
Tper_e(iky,ikx,iz) = Tperp
ENDIF
! ion temperature
Tperp = 0._dp
DO ij = ijs_i, ije_i
j_dp = REAL(ij-1,dp)
Tperp = Tperp + kernel_i(ij,iky,ikx,iz,0)*&
((2_dp*j_dp+1)*moments_i(ip0_i,ij ,iky,ikx,iz,updatetlevel)&
-j_dp *moments_i(ip0_i,ij-1,iky,ikx,iz,updatetlevel)&
-j_dp+1 *moments_i(ip0_i,ij+1,iky,ikx,iz,updatetlevel))
ENDDO
Tper_i(iky,ikx,iz) = Tperp
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE compute_Tperp
! Compute the 2D particle temperature for electron and ions (sum over Laguerre)
SUBROUTINE compute_Tpar
USE array, ONLY : Tpar_e, Tpar_i, kernel_e, kernel_i
USE model, ONLY : KIN_E
USE fields, ONLY : moments_e, moments_i
USE time_integration, ONLY : updatetlevel
IMPLICIT NONE
REAL(dp) :: j_dp
COMPLEX(dp) :: tpar
IF ( CONTAINS_ip0_e .AND. CONTAINS_ip0_i .AND. &
CONTAINS_ip2_e .AND. CONTAINS_ip2_i ) THEN
! Loop to compute T = 1/3*(Tpar + 2Tperp)
DO iz = izs,ize
DO iky = ikys,ikye
DO ikx = ikxs,ikxe
! electron temperature
IF(KIN_E) THEN
Tpar = 0._dp
DO ij = ijs_e, ije_e
j_dp = REAL(ij-1,dp)
Tpar = Tpar + kernel_e(ij,iky,ikx,iz,0)*&
(SQRT2 * moments_e(ip2_e,ij,iky,ikx,iz,updatetlevel) &
+ moments_e(ip0_e,ij,iky,ikx,iz,updatetlevel))
ENDDO
Tpar_e(iky,ikx,iz) = Tpar
ENDIF
! ion temperature
Tpar = 0._dp
DO ij = ijs_i, ije_i
j_dp = REAL(ij-1,dp)
Tpar = Tpar + kernel_i(ij,iky,ikx,iz,0)*&
(SQRT2 * moments_i(ip2_i,ij,iky,ikx,iz,updatetlevel) &
+ moments_i(ip0_i,ij,iky,ikx,iz,updatetlevel))
ENDDO
Tpar_i(iky,ikx,iz) = Tpar
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE compute_Tpar
! Compute the 2D particle fluid moments for electron and ions (sum over Laguerre)
SUBROUTINE compute_fluid_moments
USE array, ONLY : dens_e, Tpar_e, Tper_e, dens_i, Tpar_i, Tper_i, temp_e, temp_i
USE model, ONLY : KIN_E
IMPLICIT NONE
CALL compute_density
CALL compute_upar
CALL compute_uperp
CALL compute_Tpar
CALL compute_Tperp
! Temperature
IF(KIN_E)&
temp_e = (Tpar_e - 2._dp * Tper_e)/3._dp - dens_e
temp_i = (Tpar_i - 2._dp * Tper_i)/3._dp - dens_i
END SUBROUTINE compute_fluid_moments
END MODULE processing