-
Antoine Cyril David Hoffmann authoredAntoine Cyril David Hoffmann authored
miller_mod.F90 25.52 KiB
!! This source has been adapted from GENE https://genecode.org/ !!
!>Implementation of the local equilibrium model of [R.L. Miller et al., PoP 5, 973 (1998)
!>and [J. Candy, PPCF 51, 105009 (2009)]
MODULE miller
USE prec_const
USE basic
! use coordinates,only: gcoor, get_dzprimedz
USE grid
! use discretization
USE lagrange_interpolation
! use par_in, only: beta, sign_Ip_CW, sign_Bt_CW, Npol
USE model
implicit none
public:: get_miller, set_miller_parameters
public:: rho, kappa, delta, s_kappa, s_delta, drR, drZ, zeta, s_zeta
public:: thetaShift
public:: thetak, thetad
private
real(dp) :: rho, kappa, delta, s_kappa, s_delta, drR, drZ, zeta, s_zeta
real(dp) :: thetaShift
real(dp) :: thetak, thetad
CONTAINS
!>Set defaults for miller parameters
subroutine set_miller_parameters(kappa_,s_kappa_,delta_,s_delta_,zeta_,s_zeta_)
real(dp), INTENT(IN) :: kappa_,s_kappa_,delta_,s_delta_,zeta_,s_zeta_
rho = -1.0
kappa = kappa_
s_kappa = s_kappa_
delta = delta_
s_delta = s_delta_
zeta = zeta_
s_zeta = s_zeta_
drR = 0.0
drZ = 0.0
thetak = 0.0
thetad = 0.0
end subroutine set_miller_parameters
!>Get Miller metric, magnetic field, jacobian etc.
subroutine get_miller(trpeps,major_R,major_Z,q0,shat,amhd,edge_opt,&
C_y,C_xy,dpdx_pm_geom,gxx_,gyy_,gzz_,gxy_,gxz_,gyz_,dBdx_,dBdy_,&
Bfield_,jacobian_,dBdz_,R_hat_,Z_hat_,dxdR_,dxdZ_,Ckxky_,gradz_coeff_)
!!!!!!!!!!!!!!!! GYACOMO INTERFACE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
real(dp), INTENT(INOUT) :: trpeps ! eps in gyacomo (inverse aspect ratio)
real(dp), INTENT(INOUT) :: major_R ! major radius
real(dp), INTENT(INOUT) :: major_Z ! major Z
real(dp), INTENT(INOUT) :: q0 ! safetyfactor
real(dp), INTENT(INOUT) :: shat ! safetyfactor
real(dp), INTENT(INOUT) :: amhd ! alpha mhd
real(dp), INTENT(INOUT) :: edge_opt ! alpha mhd
real(dp), INTENT(INOUT) :: dpdx_pm_geom ! amplitude mag. eq. pressure grad.
real(dp), INTENT(INOUT) :: C_y, C_xy
real(dp), dimension(izgs:izge,0:1), INTENT(INOUT) :: &
gxx_,gyy_,gzz_,gxy_,gxz_,gyz_,&
dBdx_,dBdy_,Bfield_,jacobian_,&
dBdz_,R_hat_,Z_hat_,dxdR_,dxdZ_, &
gradz_coeff_
real(dp), dimension(ikys:ikye,ikxs:ikxe,izgs:izge,0:1), INTENT(INOUT) :: Ckxky_
! No parameter in gyacomo yet
real(dp) :: sign_Ip_CW=1 ! current sign (only normal current)
real(dp) :: sign_Bt_CW=1 ! current sign (only normal current)
!!!!!!!!!!!!!! END GYACOMO INTERFACE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Auxiliary variables for curvature computation
real(dp) :: G1,G2,G3,Cx,Cy,ky,kx
integer:: np, np_s, Npol_ext, Npol_s
real(dp), dimension(500*(Npol+2)):: R,Z,R_rho,Z_rho,R_theta,Z_theta,R_theta_theta,Z_theta_theta,dlp,Rc,cosu,sinu,Bphi
real(dp), dimension(500*(Npol+2)):: drRcirc, drRelong, drRelongTilt, drRtri, drRtriTilt, drZcirc, drZelong, drZelongTilt
real(dp), dimension(500*(Npol+2)):: drZtri, drZtriTilt, dtdtRcirc, dtdtRelong, dtdtRelongTilt, dtdtRtri, dtdtRtriTilt
real(dp), dimension(500*(Npol+2)):: dtdtZcirc, dtdtZelong, dtdtZelongTilt, dtdtZtri, dtdtZtriTilt, dtRcirc, dtRelong
real(dp), dimension(500*(Npol+2)):: dtRelongTilt, dtRtri, dtRtriTilt, dtZcirc, dtZelong, dtZelongTilt, dtZtri, dtZtriTilt
real(dp), dimension(500*(Npol+2)):: Rcirc, Relong, RelongTilt, Rtri, RtriTilt, Zcirc, Zelong, ZelongTilt, Ztri, ZtriTilt
! real(dp), dimension(500*(Npol+2)):: drrShape, drrAng, drxAng, dryAng, dtdtrShape, dtdtrAng, dtdtxAng
! real(dp), dimension(500*(Npol+2)):: dtdtyAng, dtrShape, dtrAng, dtxAng, dtyAng, rShape, rAng, xAng, yAng
real(dp), dimension(500*(Npol+2)):: theta, thAdj, J_r, B, Bp, D0, D1, D2, D3, nu, chi, psi1, nu1
real(dp), dimension(500*(Npol+2)):: tmp_reverse, theta_reverse, tmp_arr
real(dp), dimension(500*(Npol+1)):: theta_s, thAdj_s, chi_s, theta_s_reverse
real(dp), dimension(500*(Npol+1)):: R_s, Z_s, R_theta_s, Z_theta_s, Rc_s, cosu_s, sinu_s, Bphi_s, B_s, Bp_s, dlp_s
real(dp), dimension(500*(Npol+1)):: dtRcirc_s, dtRelong_s, dtRelongTilt_s, dtRtri_s, dtRtriTilt_s, dtZcirc_s
real(dp), dimension(500*(Npol+1)):: dtZelong_s, dtZelongTilt_s, dtZtri_s, dtZtriTilt_s, Rcirc_s, Relong_s, RelongTilt_s
real(dp), dimension(500*(Npol+1)):: Rtri_s, RtriTilt_s, Zcirc_s, Zelong_s, ZelongTilt_s, Ztri_s, ZtriTilt_s!, dtrShape_s
! real(dp), dimension(500*(Npol+1)):: dtrAng_s, dtxAng_s, dtyAng_s, rShape_s, rAng_s, xAng_s, yAng_s
real(dp), dimension(500*(Npol+1)):: psi1_s, nu1_s, dchidx_s, dB_drho_s, dB_dl_s, dnu_drho_s, dnu_dl_s, grad_nu_s
real(dp), dimension(500*(Npol+1)):: gxx, gxy, gxz, gyy, gyz, gzz, dtheta_dchi_s, dBp_dchi_s, jacobian, dBdx, dBdz
real(dp), dimension(500*(Npol+1)):: g_xx, g_xy, g_xz, g_yy, g_yz, g_zz, tmp_arr_s, dxdR_s, dxdZ_s, K_x, K_y !tmp_arr2
real(dp), dimension(1:Nz):: gxx_out,gxy_out,gxz_out,gyy_out,gyz_out,gzz_out,Bfield_out,jacobian_out, dBdx_out, dBdz_out, chi_out
real(dp), dimension(1:Nz):: R_out, Z_out, dxdR_out, dxdZ_out
real(dp):: d_inv, drPsi, dxPsi, dq_dx, dq_dpsi, R0, Z0, B0, F, D0_full, D1_full, D2_full, D3_full
!real(dp) :: Lnorm, Psi0 ! currently module-wide defined anyway
real(dp):: pprime, ffprime, D0_mid, D1_mid, D2_mid, D3_mid, dx_drho, pi, mu_0, dzprimedz
! real(dp):: rho_a, psiN, drpsiN, CN2, CN3, Rcenter, Zcenter, drRcenter, drZcenter
logical:: bMaxShift
integer:: i, k, iBmax
Npol_ext = Npol+2
Npol_s = Npol+1
np = 500*Npol_ext
np_s = 500*Npol_s
rho = trpeps*major_R
if (rho.le.0.0) ERROR STOP '>> ERROR << flux surface radius not defined'
trpeps = rho/major_R
q0 = sign_Ip_CW * sign_Bt_CW * abs(q0)
R0=major_R
B0=1.0*sign_Bt_CW
F=R0*B0
Z0=major_Z
pi = acos(-1.0)
mu_0=4.0*pi
theta=linspace(-pi*Npol_ext,pi*Npol_ext-2._dp*pi*Npol_ext/np,np)
d_inv=asin(delta)
thetaShift = 0.0
iBmax = 1
!flux surface parametrization
thAdj = theta + thetaShift
if (zeta/=0.0 .or. s_zeta/=0.0) then
R = R0 + rho*Cos(thAdj + d_inv*Sin(thAdj))
Z = Z0 + kappa*rho*Sin(thAdj + zeta*Sin(2*thAdj))
R_rho = drR + Cos(thAdj + d_inv*Sin(thAdj)) - s_delta*Sin(thAdj)*Sin(thAdj + d_inv*Sin(thAdj))
Z_rho = drZ + kappa*s_zeta*Cos(thAdj + zeta*Sin(2*thAdj))*Sin(2*thAdj) &
+ kappa*Sin(thAdj + zeta*Sin(2*thAdj)) + kappa*s_kappa*Sin(thAdj + zeta*Sin(2*thAdj))
R_theta = -(rho*(1 + d_inv*Cos(thAdj))*Sin(thAdj + d_inv*Sin(thAdj)))
Z_theta = kappa*rho*(1 + 2*zeta*Cos(2*thAdj))*Cos(thAdj + zeta*Sin(2*thAdj))
R_theta_theta = -(rho*(1 + d_inv*Cos(thAdj))**2*Cos(thAdj + d_inv*Sin(thAdj))) &
+ d_inv*rho*Sin(thAdj)*Sin(thAdj + d_inv*Sin(thAdj))
Z_theta_theta = -4*kappa*rho*zeta*Cos(thAdj + zeta*Sin(2*thAdj))*Sin(2*thAdj) &
- kappa*rho*(1 + 2*zeta*Cos(2*thAdj))**2*Sin(thAdj + zeta*Sin(2*thAdj))
else
Rcirc = rho*Cos(thAdj - thetad + thetak)
Zcirc = rho*Sin(thAdj - thetad + thetak)
Relong = Rcirc
Zelong = Zcirc + (-1 + kappa)*rho*Sin(thAdj - thetad + thetak)
RelongTilt = Relong*Cos(thetad - thetak) - Zelong*Sin(thetad - thetak)
ZelongTilt = Zelong*Cos(thetad - thetak) + Relong*Sin(thetad - thetak)
Rtri = RelongTilt - rho*Cos(thAdj) + rho*Cos(thAdj + delta*Sin(thAdj))
Ztri = ZelongTilt
RtriTilt = Rtri*Cos(thetad) + Ztri*Sin(thetad)
ZtriTilt = Ztri*Cos(thetad) - Rtri*Sin(thetad)
R = R0 + RtriTilt
Z = Z0 + ZtriTilt
drRcirc = Cos(thAdj - thetad + thetak)
drZcirc = Sin(thAdj - thetad + thetak)
drRelong = drRcirc
drZelong = drZcirc - (1 - kappa - kappa*s_kappa)*Sin(thAdj - thetad + thetak)
drRelongTilt = drRelong*Cos(thetad - thetak) - drZelong*Sin(thetad - thetak)
drZelongTilt = drZelong*Cos(thetad - thetak) + drRelong*Sin(thetad - thetak)
drRtri = drRelongTilt - Cos(thAdj) + Cos(thAdj + delta*Sin(thAdj)) &
- s_delta*Sin(thAdj)*Sin(thAdj + delta*Sin(thAdj))
drZtri = drZelongTilt
drRtriTilt = drRtri*Cos(thetad) + drZtri*Sin(thetad)
drZtriTilt = drZtri*Cos(thetad) - drRtri*Sin(thetad)
R_rho = drR + drRtriTilt
Z_rho = drZ + drZtriTilt
dtRcirc = -(rho*Sin(thAdj - thetad + thetak))
dtZcirc = rho*Cos(thAdj - thetad + thetak)
dtRelong = dtRcirc
dtZelong = dtZcirc + (-1 + kappa)*rho*Cos(thAdj - thetad + thetak)
dtRelongTilt = dtRelong*Cos(thetad - thetak) - dtZelong*Sin(thetad - thetak)
dtZelongTilt = dtZelong*Cos(thetad - thetak) + dtRelong*Sin(thetad - thetak)
dtRtri = dtRelongTilt + rho*Sin(thAdj) - rho*(1 + delta*Cos(thAdj))*Sin(thAdj + delta*Sin(thAdj))
dtZtri = dtZelongTilt
dtRtriTilt = dtRtri*Cos(thetad) + dtZtri*Sin(thetad)
dtZtriTilt = dtZtri*Cos(thetad) - dtRtri*Sin(thetad)
R_theta = dtRtriTilt
Z_theta = dtZtriTilt
dtdtRcirc = -(rho*Cos(thAdj - thetad + thetak))
dtdtZcirc = -(rho*Sin(thAdj - thetad + thetak))
dtdtRelong = dtdtRcirc
dtdtZelong = dtdtZcirc - (-1 + kappa)*rho*Sin(thAdj - thetad + thetak)
dtdtRelongTilt = dtdtRelong*Cos(thetad - thetak) - dtdtZelong*Sin(thetad - thetak)
dtdtZelongTilt = dtdtZelong*Cos(thetad - thetak) + dtdtRelong*Sin(thetad - thetak)
dtdtRtri = dtdtRelongTilt + rho*Cos(thAdj) - rho*(1 + delta*Cos(thAdj))**2*Cos(thAdj + delta*Sin(thAdj)) &
+ delta*rho*Sin(thAdj)*Sin(thAdj + delta*Sin(thAdj))
dtdtZtri = dtdtZelongTilt
dtdtRtriTilt = dtdtRtri*Cos(thetad) + dtdtZtri*Sin(thetad)
dtdtZtriTilt = dtdtZtri*Cos(thetad) - dtdtRtri*Sin(thetad)
R_theta_theta = dtdtRtriTilt
Z_theta_theta = dtdtZtriTilt
endif
!dl/dtheta
dlp=(R_theta**2+Z_theta**2)**0.5
!curvature radius
Rc=dlp**3*(R_theta*Z_theta_theta-Z_theta*R_theta_theta)**(-1)
! some useful quantities (see papers for definition of u)
cosu=Z_theta/dlp
sinu=-R_theta/dlp
!Jacobian J_r = (dPsi/dr) J_psi = (dPsi/dr) / [(nabla fz x nabla psi)* nabla theta]
! = R * (dR/drho dZ/dtheta - dR/dtheta dZ/drho) = R dlp / |nabla r|
J_r=R*(R_rho*Z_theta-R_theta*Z_rho)
!From definition of q = 1/(2 pi) int (B nabla fz) / (B nabla theta) dtheta:
!dPsi/dr = sign_Bt sign_Ip / (2 pi q) int F / R^2 J_r dtheta
! = F / (2 pi |q|) int J_r/R^2 dtheta
tmp_arr=J_r/R**2
drPsi=sign_Ip_CW*F/(2.*pi*Npol_ext*q0)*sum(tmp_arr)*2*pi*Npol_ext/np !dlp_int(tmp_arr,1.0)
!Poloidal field (Bp = Bvec * nabla l)
Bp=sign_Ip_CW * drPsi / J_r * dlp
!toroidal field
Bphi=F/R
!total modulus of Bfield
B=sqrt(Bphi**2+Bp**2)
bMaxShift = .false.
! if (thetaShift==0.0.and.trim(magn_geometry).ne.'miller_general') then
if (thetaShift==0.0) then
do i = 2,np-1
if (B(iBmax)<B(i)) then
iBmax = i
end if
enddo
if (iBmax/=1) then
bMaxShift = .true.
thetaShift = theta(iBmax)-theta(1)
end if
end if
!definition of radial coordinate! dx_drho=1 --> x = r
dx_drho=1. !drPsi/Psi0*Lnorm*q0
if (my_id==0) write(*,"(A,ES12.4)") 'Using radial coordinate with dx/dr = ',dx_drho
dxPsi = drPsi/dx_drho
C_y = dxPsi*sign_Ip_CW
C_xy = abs(B0*dxPsi/C_y)
if (my_id==0) then
write(*,"(A,ES12.4,A,ES12.4,A,ES12.4)") &
"Setting C_xy = ",C_xy,' C_y = ', C_y," C_x' = ", 1./dxPsi
write(*,'(A,ES12.4)') "B_unit/Bref conversion factor = ", q0/rho*drPsi
write(*,'(A,ES12.4)') "dPsi/dr = ", drPsi
if (thetaShift.ne.0.0) write(*,'(A,ES12.4)') "thetaShift = ", thetaShift
endif
!--------shear is expected to be defined as rho/q*dq/drho--------!
dq_dx=shat*q0/rho/dx_drho
dq_dpsi=dq_dx/dxPsi
pprime=-amhd/q0**2/R0/(2*mu_0)*B0**2/drPsi
!neg. dpdx normalized to magnetic pressure for pressure term
dpdx_pm_geom=amhd/q0**2/R0/dx_drho
!first coefficient of psi in varrho expansion
psi1 = R*Bp*sign_Ip_CW
!integrals for ffprime evaluation
do i=1,np
tmp_arr=(2./Rc-2.*cosu/R)/(R*psi1**2)
D0(i)=-F*dlp_int_ind(tmp_arr,dlp,i)
tmp_arr=B**2*R/psi1**3
D1(i)=-dlp_int_ind(tmp_arr,dlp,i)/F
tmp_arr=mu_0*R/psi1**3
D2(i)=-dlp_int_ind(tmp_arr,dlp,i)*F
tmp_arr=1./(R*psi1)
D3(i)=-dlp_int_ind(tmp_arr,dlp,i)*F
enddo
tmp_arr=(2./Rc-2.*cosu/R)/(R*psi1**2)
D0_full=-F*dlp_int(tmp_arr,dlp)
tmp_arr=B**2*R/psi1**3
D1_full=-dlp_int(tmp_arr,dlp)/F
tmp_arr=mu_0*R/psi1**3
D2_full=-dlp_int(tmp_arr,dlp)*F
tmp_arr=1./(R*psi1)
D3_full=-dlp_int(tmp_arr,dlp)*F
D0_mid=D0(np/2+1)
D1_mid=D1(np/2+1)
D2_mid=D2(np/2+1)
D3_mid=D3(np/2+1)
ffprime=-(sign_Ip_CW*dq_dpsi*2.*pi*Npol_ext+D0_full+D2_full*pprime)/D1_full
if (my_id==0) then
write(*,'(A,ES12.4)') "ffprime = ", ffprime
endif
D0=D0-D0_mid
D1=D1-D1_mid
D2=D2-D2_mid
nu=D3-D3_mid
nu1=psi1*(D0+D1*ffprime+D2*pprime)
!straight field line angle defined on equidistant theta grid
!alpha = fz + nu = - (q chi - fz) => chi = -nu / q
chi=-nu/q0
!correct small scaling error (<0.5%, due to finite integration resolution)
chi=chi*(maxval(theta)-minval(theta))/(maxval(chi)-minval(chi))
!new grid equidistant in straight field line angle
chi_s = linspace(-pi*Npol_s,pi*Npol_s-2*pi*Npol_s/np_s,np_s)
if (sign_Ip_CW.lt.0.0) then !make chi increasing function to not confuse lag3interp
tmp_reverse = chi(np:1:-1)
theta_reverse = theta(np:1:-1)
call lag3interp(theta_reverse,tmp_reverse,np,theta_s,chi_s,np_s)
theta_s_reverse = theta_s(np_s:1:-1)
else
!lag3interp(y_in,x_in,n_in,y_out,x_out,n_out)
call lag3interp(theta,chi,np,theta_s,chi_s,np_s)
endif
dtheta_dchi_s=deriv_fd(theta_s,chi_s,np_s)
!arrays equidistant in straight field line angle
thAdj_s = theta_s + thetaShift
if (zeta/=0.0 .or. s_zeta/=0.0) then
R_s = R0 + rho*Cos(thAdj_s + d_inv*Sin(thAdj_s))
Z_s = Z0 + kappa*rho*Sin(thAdj_s + zeta*Sin(2*thAdj_s))
R_theta_s = -(dtheta_dchi_s*rho*(1 + d_inv*Cos(thAdj_s))*Sin(thAdj_s + d_inv*Sin(thAdj_s)))
Z_theta_s = dtheta_dchi_s*kappa*rho*(1 + 2*zeta*Cos(2*thAdj_s))*Cos(thAdj_s + zeta*Sin(2*thAdj_s))
else
Rcirc_s = rho*Cos(thAdj_s - thetad + thetak)
Zcirc_s = rho*Sin(thAdj_s - thetad + thetak)
Relong_s = Rcirc_s
Zelong_s = Zcirc_s + (-1 + kappa)*rho*Sin(thAdj_s - thetad + thetak)
RelongTilt_s = Relong_s*Cos(thetad - thetak) - Zelong_s*Sin(thetad - thetak)
ZelongTilt_s = Zelong_s*Cos(thetad - thetak) + Relong_s*Sin(thetad - thetak)
Rtri_s = RelongTilt_s - rho*Cos(thAdj_s) + rho*Cos(thAdj_s + delta*Sin(thAdj_s))
Ztri_s = ZelongTilt_s
RtriTilt_s = Rtri_s*Cos(thetad) + Ztri_s*Sin(thetad)
ZtriTilt_s = Ztri_s*Cos(thetad) - Rtri_s*Sin(thetad)
R_s = R0 + RtriTilt_s
Z_s = Z0 + ZtriTilt_s
dtRcirc_s = -(rho*Sin(thAdj_s - thetad + thetak))
dtZcirc_s = rho*Cos(thAdj_s - thetad + thetak)
dtRelong_s = dtRcirc_s
dtZelong_s = dtZcirc_s + (-1 + kappa)*rho*Cos(thAdj_s - thetad + thetak)
dtRelongTilt_s = dtRelong_s*Cos(thetad - thetak) - dtZelong_s*Sin(thetad - thetak)
dtZelongTilt_s = dtZelong_s*Cos(thetad - thetak) + dtRelong_s*Sin(thetad - thetak)
dtRtri_s = dtRelongTilt_s + rho*Sin(thAdj_s) &
- rho*(1 + delta*Cos(thAdj_s))*Sin(thAdj_s + delta*Sin(thAdj_s))
dtZtri_s = dtZelongTilt_s
dtRtriTilt_s = dtRtri_s*Cos(thetad) + dtZtri_s*Sin(thetad)
dtZtriTilt_s = dtZtri_s*Cos(thetad) - dtRtri_s*Sin(thetad)
R_theta_s = dtheta_dchi_s*dtRtriTilt_s
Z_theta_s = dtheta_dchi_s*dtZtriTilt_s
endif
if (sign_Ip_CW.lt.0.0) then
call lag3interp(nu1,theta,np,tmp_arr_s,theta_s_reverse,np_s)
nu1_s = tmp_arr_s(np_s:1:-1)
call lag3interp(Bp,theta,np,tmp_arr_s,theta_s_reverse,np_s)
Bp_s = tmp_arr_s(np_s:1:-1)
call lag3interp(dlp,theta,np,tmp_arr_s,theta_s_reverse,np_s)
dlp_s = tmp_arr_s(np_s:1:-1)
call lag3interp(Rc,theta,np,tmp_arr_s,theta_s_reverse,np_s)
Rc_s = tmp_arr_s(np_s:1:-1)
else
call lag3interp(nu1,theta,np,nu1_s,theta_s,np_s)
call lag3interp(Bp,theta,np,Bp_s,theta_s,np_s)
call lag3interp(dlp,theta,np,dlp_s,theta_s,np_s)
call lag3interp(Rc,theta,np,Rc_s,theta_s,np_s)
endif
psi1_s = R_s*Bp_s*sign_Ip_CW
dBp_dchi_s=deriv_fd(Bp_s,chi_s,np_s)
Bphi_s=F/R_s
B_s=sqrt(Bphi_s**2+Bp_s**2)
cosu_s=Z_theta_s/dlp_s/dtheta_dchi_s
sinu_s=-R_theta_s/dlp_s/dtheta_dchi_s
!radial derivative of straight field line angle
dchidx_s=-(nu1_s/psi1_s*dxPsi+chi_s*dq_dx)/q0
!Bfield derivatives in Mercier-Luc coordinates (varrho,l,fz)
dB_drho_s=-1./B_s*(F**2/R_s**3*cosu_s+Bp_s**2/Rc_s+mu_0*psi1_s*pprime)
dB_dl_s=1./B_s*(Bp_s*dBp_dchi_s/dtheta_dchi_s/dlp_s+F**2/R_s**3*sinu_s)
dnu_drho_s=nu1_s
dnu_dl_s=-F/(R_s*psi1_s)
grad_nu_s=sqrt(dnu_drho_s**2+dnu_dl_s**2)
!contravariant metric coefficients (varrho,l,fz)->(x,y,z)
gxx=(psi1_s/dxPsi)**2
gxy=-psi1_s/dxPsi*C_y*sign_Ip_CW*nu1_s
gxz=-psi1_s/dxPsi*(nu1_s+psi1_s*dq_dpsi*chi_s)/q0
gyy=C_y**2*(grad_nu_s**2+1/R_s**2)
gyz=sign_Ip_CW*C_y/q0*(grad_nu_s**2+dq_dpsi*nu1_s*psi1_s*chi_s)
gzz=1./q0**2*(grad_nu_s**2+2.*dq_dpsi*nu1_s*psi1_s*chi_s+(dq_dpsi*psi1_s*chi_s)**2)
jacobian=1./sqrt(gxx*gyy*gzz + 2.*gxy*gyz*gxz - gxz**2*gyy - gyz**2*gxx - gzz*gxy**2)
!covariant metric coefficients
g_xx=jacobian**2*(gyy*gzz-gyz**2)
g_xy=jacobian**2*(gxz*gyz-gxy*gzz)
g_xz=jacobian**2*(gxy*gyz-gxz*gyy)
g_yy=jacobian**2*(gxx*gzz-gxz**2)
g_yz=jacobian**2*(gxz*gxy-gxx*gyz)
g_zz=jacobian**2*(gxx*gyy-gxy**2)
!Bfield derivatives
!dBdx = e_x * nabla B = J (nabla y x nabla z) * nabla B
dBdx=jacobian*C_y/(q0*R_s)*(F/(R_s*psi1_s)*dB_drho_s+(nu1_s+dq_dpsi*chi_s*psi1_s)*dB_dl_s)
dBdz=1./B_s*(Bp_s*dBp_dchi_s-F**2/R_s**3*R_theta_s)
!curvature terms (these are just local and will be recalculated in geometry.F90)
K_x = (0.-g_yz/g_zz*dBdz)
K_y = (dBdx-g_xz/g_zz*dBdz)
!(R,Z) derivatives for visualization
dxdR_s = dx_drho/drPsi*psi1_s*cosu_s
dxdZ_s = dx_drho/drPsi*psi1_s*sinu_s
if (edge_opt==0.0) then
!gene z-grid
chi_out=linspace(-pi*Npol,pi*Npol-2*pi*Npol/Nz,Nz)
else
!new parallel coordinate chi_out==zprime
!see also tracer_aux.F90
if (Npol>1) ERROR STOP '>> ERROR << Npol>1 has not been implemented for edge_opt=\=0.0'
do k=izs,ize
chi_out(k)=sinh((-pi+k*2.*pi/Nz)*log(edge_opt*pi+sqrt(edge_opt**2*pi**2+1))/pi)/edge_opt
enddo
!transform metrics according to chain rule
do k=1,np_s
!>dz'/dz conversion for edge_opt as function of z
if (edge_opt.gt.0) then
dzprimedz = edge_opt*pi/log(edge_opt*pi+sqrt((edge_opt*pi)**2+1))/&
sqrt((edge_opt*chi_s(k))**2+1)
else
dzprimedz = 1.0
endif
gxz(k)=gxz(k)*dzprimedz
gyz(k)=gyz(k)*dzprimedz
gzz(k)=gzz(k)*dzprimedz**2
jacobian(k)=jacobian(k)/dzprimedz
dBdz(k)=dBdz(k)/dzprimedz
enddo
endif !edge_opt
!interpolate down to GENE z-grid
call lag3interp(gxx,chi_s,np_s,gxx_out,chi_out,Nz)
call lag3interp(gxy,chi_s,np_s,gxy_out,chi_out,Nz)
call lag3interp(gxz,chi_s,np_s,gxz_out,chi_out,Nz)
call lag3interp(gyy,chi_s,np_s,gyy_out,chi_out,Nz)
call lag3interp(gyz,chi_s,np_s,gyz_out,chi_out,Nz)
call lag3interp(gzz,chi_s,np_s,gzz_out,chi_out,Nz)
call lag3interp(B_s,chi_s,np_s,Bfield_out,chi_out,Nz)
call lag3interp(jacobian,chi_s,np_s,jacobian_out,chi_out,Nz)
call lag3interp(dBdx,chi_s,np_s,dBdx_out,chi_out,Nz)
call lag3interp(dBdz,chi_s,np_s,dBdz_out,chi_out,Nz)
call lag3interp(R_s,chi_s,np_s,R_out,chi_out,Nz)
call lag3interp(Z_s,chi_s,np_s,Z_out,chi_out,Nz)
call lag3interp(dxdR_s,chi_s,np_s,dxdR_out,chi_out,Nz)
call lag3interp(dxdZ_s,chi_s,np_s,dxdZ_out,chi_out,Nz)
! Fill the geom arrays with the results
do eo=0,1
gxx_(izs:ize,eo) =gxx_out(izs:ize)
gyy_(izs:ize,eo) =gyy_out(izs:ize)
gxz_(izs:ize,eo) =gxz_out(izs:ize)
gyz_(izs:ize,eo) =gyz_out(izs:ize)
dBdx_(izs:ize,eo) =dBdx_out(izs:ize)
dBdy_(izs:ize,eo) =0.
gxy_(izs:ize,eo) =gxy_out(izs:ize)
gzz_(izs:ize,eo) =gzz_out(izs:ize)
Bfield_(izs:ize,eo) =Bfield_out(izs:ize)
jacobian_(izs:ize,eo) =jacobian_out(izs:ize)
dBdz_(izs:ize,eo) =dBdz_out(izs:ize)
R_hat_(izs:ize,eo) =R_out(izs:ize)
Z_hat_(izs:ize,eo) =Z_out(izs:ize)
dxdR_(izs:ize,eo) = dxdR_out(izs:ize)
dxdZ_(izs:ize,eo) = dxdZ_out(izs:ize)
!! UPDATE GHOSTS VALUES (since the miller function in GENE does not)
CALL update_ghosts_z(gxx_(:,eo))
CALL update_ghosts_z(gyy_(:,eo))
CALL update_ghosts_z(gxz_(:,eo))
CALL update_ghosts_z(gxy_(:,eo))
CALL update_ghosts_z(gzz_(:,eo))
CALL update_ghosts_z(Bfield_(:,eo))
CALL update_ghosts_z(dBdx_(:,eo))
CALL update_ghosts_z(dBdy_(:,eo))
CALL update_ghosts_z(dBdz_(:,eo))
CALL update_ghosts_z(jacobian_(:,eo))
CALL update_ghosts_z(R_hat_(:,eo))
CALL update_ghosts_z(Z_hat_(:,eo))
CALL update_ghosts_z(dxdR_(:,eo))
CALL update_ghosts_z(dxdZ_(:,eo))
! Curvature operator (Frei et al. 2022 eq 2.15)
DO iz = izgs,izge
G1 = gxy_(iz,eo)*gxy_(iz,eo)-gxx_(iz,eo)*gyy_(iz,eo)
G2 = gxy_(iz,eo)*gxz_(iz,eo)-gxx_(iz,eo)*gyz_(iz,eo)
G3 = gyy_(iz,eo)*gxz_(iz,eo)-gxy_(iz,eo)*gyz_(iz,eo)
Cx = (G1*dBdy_(iz,eo) + G2*dBdz_(iz,eo))/Bfield_(iz,eo)
Cy = (G3*dBdz_(iz,eo) - G1*dBdx_(iz,eo))/Bfield_(iz,eo)
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx= ikxs, ikxe
kx = kxarray(ikx)
Ckxky_(iky, ikx, iz,eo) = (Cx*kx + Cy*ky)
ENDDO
ENDDO
! coefficient in the front of parallel derivative
gradz_coeff_(iz,eo) = 1._dp / jacobian_(iz,eo) / Bfield_(iz,eo)
ENDDO
ENDDO
contains
SUBROUTINE update_ghosts_z(fz_)
IMPLICIT NONE
! INTEGER, INTENT(IN) :: nztot_
REAL(dp), DIMENSION(izgs:izge), INTENT(INOUT) :: fz_
REAL(dp), DIMENSION(-2:2) :: buff
INTEGER :: status(MPI_STATUS_SIZE), count
IF(Nz .GT. 1) THEN
IF (num_procs_z .GT. 1) THEN
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
count = 1 ! one point to exchange
!!!!!!!!!!! Send ghost to up neighbour !!!!!!!!!!!!!!!!!!!!!!
CALL mpi_sendrecv(fz_(ize), count, MPI_DOUBLE, nbr_U, 0, & ! Send to Up the last
buff(-1), count, MPI_DOUBLE, nbr_D, 0, & ! Receive from Down the first-1
comm0, status, ierr)
CALL mpi_sendrecv(fz_(ize-1), count, MPI_DOUBLE, nbr_U, 0, & ! Send to Up the last
buff(-2), count, MPI_DOUBLE, nbr_D, 0, & ! Receive from Down the first-2
comm0, status, ierr)
!!!!!!!!!!! Send ghost to down neighbour !!!!!!!!!!!!!!!!!!!!!!
CALL mpi_sendrecv(fz_(izs), count, MPI_DOUBLE, nbr_D, 0, & ! Send to Down the first
buff(+1), count, MPI_DOUBLE, nbr_U, 0, & ! Recieve from Up the last+1
comm0, status, ierr)
CALL mpi_sendrecv(fz_(izs+1), count, MPI_DOUBLE, nbr_D, 0, & ! Send to Down the first
buff(+2), count, MPI_DOUBLE, nbr_U, 0, & ! Recieve from Up the last+2
comm0, status, ierr)
ELSE
buff(-1) = fz_(ize )
buff(-2) = fz_(ize-1)
buff(+1) = fz_(izs )
buff(+2) = fz_(izs+1)
ENDIF
fz_(ize+1) = buff(+1)
fz_(ize+2) = buff(+2)
fz_(izs-1) = buff(-1)
fz_(izs-2) = buff(-2)
ENDIF
END SUBROUTINE update_ghosts_z
!> Generate an equidistant array from min to max with n points
function linspace(min,max,n) result(out)
real(dp), INTENT(IN):: min, max
integer, INTENT(IN):: n
real(dp), dimension(n):: out
do i=1,n
out(i)=min+(i-1)*(max-min)/(n-1)
enddo
end function linspace
!> Weighted average
real(dp) function average(var,weight)
real(dp), dimension(np), INTENT(IN):: var, weight
average=sum(var*weight)/sum(weight)
end function average
!> full theta integral with weight function dlp
real(dp) function dlp_int(var,dlp)
real(dp), dimension(np), INTENT(IN):: var, dlp
dlp_int=sum(var*dlp)*2*pi*Npol_ext/np
end function dlp_int
!> theta integral with weight function dlp, up to index 'ind'
real(dp) function dlp_int_ind(var,dlp,ind)
real(dp), dimension(np), INTENT(IN):: var, dlp
integer, INTENT(IN):: ind
dlp_int_ind=0.
if (ind.gt.1) then
dlp_int_ind=dlp_int_ind+var(1)*dlp(1)*pi*Npol_ext/np
dlp_int_ind=dlp_int_ind+(sum(var(2:ind-1)*dlp(2:ind-1)))*2*pi*Npol_ext/np
dlp_int_ind=dlp_int_ind+var(ind)*dlp(ind)*pi*Npol_ext/np
endif
end function dlp_int_ind
!> 1st derivative with 2nd order finite differences
function deriv_fd(y,x,n) result(out)
integer, INTENT(IN) :: n
real(dp), dimension(n), INTENT(IN):: x,y
real(dp), dimension(n) :: out,dx
!call lag3deriv(y,x,n,out,x,n)
out=0.
do i=2,n-1
out(i)=out(i)-y(i-1)/2
out(i)=out(i)+y(i+1)/2
enddo
out(1)=y(2)-y(1)
out(n)=y(n)-y(n-1)
dx=x(2)-x(1)
out=out/dx
end function deriv_fd
end subroutine get_miller
END MODULE miller