Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
0fe55255
Commit
0fe55255
authored
3 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
update for HeLaZ3
parent
63aba719
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/marconi_run.m
+46
-43
46 additions, 43 deletions
wk/marconi_run.m
with
46 additions
and
43 deletions
wk/marconi_run.m
+
46
−
43
View file @
0fe55255
...
...
@@ -2,14 +2,14 @@ clear all;
addpath
(
genpath
(
'../matlab'
))
% ... add
SUBMIT
=
1
;
% To submit the job automatically
% EXECNAME = 'helaz_dbg';
EXECNAME
=
'helaz_
2.8
'
;
for
ETAN
=
[
1
.4
]
EXECNAME
=
'helaz_
3.0
'
;
for
ETAN
=
[
1
/
0.6
]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set Up parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLUSTER PARAMETERS
CLUSTER
.
PART
=
'prod'
;
% dbg or prod
%
CLUSTER.PART = 'dbg';
%
CLUSTER.PART = 'prod'; % dbg or prod
CLUSTER
.
PART
=
'dbg'
;
CLUSTER
.
TIME
=
'24:00:00'
;
% allocation time hh:mm:ss
if
(
strcmp
(
CLUSTER
.
PART
,
'dbg'
));
CLUSTER
.
TIME
=
'00:30:00'
;
end
;
CLUSTER
.
MEM
=
'128GB'
;
% Memory
...
...
@@ -18,39 +18,41 @@ NP_P = 2; % MPI processes along p
NP_KX
=
24
;
% MPI processes along kx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% PHYSICAL PARAMETERS
NU
=
1e-2
;
% Collision frequency
NU_HYP
=
0.0
;
% Hyperdiffusivity coefficient
% ETAN = 1.0; % Density gradient
% (0 : L.Bernstein, 1 : Dougherty, 2: Sugama, 3 : Pitch angle ; +/- for GK/DK)
CO
=
3
;
INIT_ZF
=
0
;
ZF_AMP
=
0.0
;
NU
=
0.1
;
% Collision frequency
ETAN
=
0
/
0.6
;
% Density gradient drive (R/Ln)
NU_HYP
=
0.0
;
%% GRID PARAMETERS
N
=
300
;
% Frequency gridpoints (Nkx = N/2)
L
=
100
;
% Size of the squared frequency domain
P
=
10
;
% Electron and Ion highest Hermite polynomial degree
J
=
5
;
% Electron and Ion highest Laguerre polynomial degree
MU_P
=
0.0
;
% Hermite hyperdiffusivity -mu_p*(d/dvpar)^4 f
MU_J
=
0.0
;
% Laguerre hyperdiffusivity -mu_j*(d/dvperp)^4 f
N
=
100
;
% Frequency gridpoints (Nkx = N/2)
L
=
60
;
% Size of the squared frequency domain
Nz
=
1
;
% number of perpendicular planes (parallel grid)
q0
=
1.0
;
% q factor ()
P
=
2
;
J
=
1
;
MU_P
=
0.0
;
% Hermite hyperdiffusivity -mu_p*(d/dvpar)^4 f
MU_J
=
0.0
;
% Laguerre hyperdiffusivity -mu_j*(d/dvperp)^4 f
%% TIME PARAMETERS
TMAX
=
10000
;
% Maximal time unit
DT
=
5e-3
;
% Time step
SPS0D
=
1
;
% Sampling per time unit for profiler
SPS2D
=
1
/
4
;
% Sampling per time unit for 2D arrays
SPS5D
=
1
/
300
;
% Sampling per time unit for 5D arrays
SPSCP
=
0
;
% Sampling per time unit for checkpoints
RESTART
=
0
;
% To restart from last checkpoint
TMAX
=
10
;
% Maximal time unit
DT
=
1e-2
;
% Time step
SPS0D
=
1
;
% Sampling per time unit for profiler
SPS2D
=
1
;
% Sampling per time unit for 2D arrays
SPS3D
=
2
;
% Sampling per time unit for 3D arrays
SPS5D
=
1
;
% Sampling per time unit for 5D arrays
SPSCP
=
0
;
% Sampling per time unit for checkpoints/10
RESTART
=
0
;
% To restart from last checkpoint
JOB2LOAD
=
0
;
%% Naming
SIMID
=
'kobayashi'
;
% Name of the simulation
% SIMID = 'test'; % Name of the simulation
% SIMID = ['v2.8_P_',num2str(P),'_J_',num2str(J)]; % Name of the simulation
PREFIX
=
[];
% PREFIX = sprintf('%d_%d_',NP_P, NP_KX);
%% Options
CLOS
=
0
;
% Closure model (0: =0 truncation, 1: semi coll, 2: Copy closure J+1 = J, P+2 = P)
NL_CLOS
=
0
;
% nonlinear closure model (-2: nmax = jmax, -1: nmax = jmax-j, >=0 : nmax = NL_CLOS)
KERN
=
0
;
% Kernel model (0 : GK)
INIT_PHI
=
1
;
% Start simulation with a noisy phi and moments
%% OPTIONS AND NAMING
% Collision operator
% (0 : L.Bernstein, 1 : Dougherty, 2: Sugama, 3 : Pitch angle ; +/- for GK/DK)
CO
=
1
;
CLOS
=
0
;
% Closure model (0: =0 truncation)
NL_CLOS
=
-
1
;
% nonlinear closure model (-2: nmax = jmax, -1: nmax = jmax-j, >=0 : nmax = NL_CLOS)
SIMID
=
'test_3D_marconi'
;
% Name of the simulation
% SIMID = 'HD_study'; % Name of the simulation
% SIMID = ['v3.0_P_',num2str(P),'_J_',num2str(J)]; % Name of the simulation
NON_LIN
=
1
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
% INIT options
INIT_ZF
=
0
;
ZF_AMP
=
0.0
;
INIT_BLOB
=
0
;
WIPE_TURB
=
0
;
%% OUTPUTS
W_DOUBLE
=
1
;
W_GAMMA
=
1
;
...
...
@@ -62,24 +64,25 @@ W_DENS = 1;
W_TEMP
=
1
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% fixed parameters (for current study)
KX0KH
=
0
;
A0KH
=
0
;
% Background phi mode
KXEQ0
=
0
;
% put kx = 0
KPAR
=
0.0
;
% Parellel wave vector component
LAMBDAD
=
0.0
;
NON_LIN
=
1
*
(
1
-
KXEQ0
);
% activate non-linearity (is cancelled if KXEQ0 = 1)
%% unused
PMAXE
=
P
;
% Highest electron Hermite polynomial degree
JMAXE
=
J
;
% Highest '' Laguerre ''
PMAXI
=
P
;
% Highest ion Hermite polynomial degree
JMAXI
=
J
;
% Highest '' Laguerre ''
KERN
=
0
;
% Kernel model (0 : GK)
KX0KH
=
0
;
A0KH
=
0
;
% Background phi mode to drive Ray-Tay inst.
KXEQ0
=
0
;
% put kx = 0
KPAR
=
0.0
;
% Parellel wave vector component
LAMBDAD
=
0.0
;
kmax
=
N
*
pi
/
L
;
% Highest fourier mode
% kmax = 2/3*N*pi/L;% Highest fourier mode with AA
HD_CO
=
0.5
;
% Hyper diffusivity cutoff ratio
% kmaxcut = 2.5;
MU
=
NU_HYP
/(
HD_CO
*
kmax
)
^
4
;
% Hyperdiffusivity coefficient
NOISE0
=
1.0e-5
;
ETAT
=
0.0
;
% Temperature gradient
ETAB
=
1.0
;
% Magnetic gradient
TAU
=
1.0
;
% e/i temperature ratio
ETAT
=
0.0
;
% Temperature gradient
ETAB
=
1.0
;
% Magnetic gradient (1.0 to set R=LB)
INIT_PHI
=
1
;
% Start simulation with a noisy phi and moments
% Compute processes distribution
Ntot
=
NP_P
*
NP_KX
;
Nnodes
=
ceil
(
Ntot
/
48
);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment