Skip to content
Snippets Groups Projects
Commit 0fe55255 authored by Antoine Cyril David Hoffmann's avatar Antoine Cyril David Hoffmann
Browse files

update for HeLaZ3

parent 63aba719
No related branches found
No related tags found
No related merge requests found
......@@ -2,14 +2,14 @@ clear all;
addpath(genpath('../matlab')) % ... add
SUBMIT = 1; % To submit the job automatically
% EXECNAME = 'helaz_dbg';
EXECNAME = 'helaz_2.8';
for ETAN = [1.4]
EXECNAME = 'helaz_3.0';
for ETAN = [1/0.6]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set Up parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLUSTER PARAMETERS
CLUSTER.PART = 'prod'; % dbg or prod
% CLUSTER.PART = 'dbg';
% CLUSTER.PART = 'prod'; % dbg or prod
CLUSTER.PART = 'dbg';
CLUSTER.TIME = '24:00:00'; % allocation time hh:mm:ss
if(strcmp(CLUSTER.PART,'dbg')); CLUSTER.TIME = '00:30:00'; end;
CLUSTER.MEM = '128GB'; % Memory
......@@ -18,39 +18,41 @@ NP_P = 2; % MPI processes along p
NP_KX = 24; % MPI processes along kx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% PHYSICAL PARAMETERS
NU = 1e-2; % Collision frequency
NU_HYP = 0.0; % Hyperdiffusivity coefficient
% ETAN = 1.0; % Density gradient
% (0 : L.Bernstein, 1 : Dougherty, 2: Sugama, 3 : Pitch angle ; +/- for GK/DK)
CO = 3;
INIT_ZF = 0; ZF_AMP = 0.0;
NU = 0.1; % Collision frequency
ETAN = 0/0.6; % Density gradient drive (R/Ln)
NU_HYP = 0.0;
%% GRID PARAMETERS
N = 300; % Frequency gridpoints (Nkx = N/2)
L = 100; % Size of the squared frequency domain
P = 10; % Electron and Ion highest Hermite polynomial degree
J = 5; % Electron and Ion highest Laguerre polynomial degree
MU_P = 0.0;% Hermite hyperdiffusivity -mu_p*(d/dvpar)^4 f
MU_J = 0.0;% Laguerre hyperdiffusivity -mu_j*(d/dvperp)^4 f
N = 100; % Frequency gridpoints (Nkx = N/2)
L = 60; % Size of the squared frequency domain
Nz = 1; % number of perpendicular planes (parallel grid)
q0 = 1.0; % q factor ()
P = 2;
J = 1;
MU_P = 0.0; % Hermite hyperdiffusivity -mu_p*(d/dvpar)^4 f
MU_J = 0.0; % Laguerre hyperdiffusivity -mu_j*(d/dvperp)^4 f
%% TIME PARAMETERS
TMAX = 10000; % Maximal time unit
DT = 5e-3; % Time step
SPS0D = 1; % Sampling per time unit for profiler
SPS2D = 1/4; % Sampling per time unit for 2D arrays
SPS5D = 1/300; % Sampling per time unit for 5D arrays
SPSCP = 0; % Sampling per time unit for checkpoints
RESTART = 0; % To restart from last checkpoint
TMAX = 10; % Maximal time unit
DT = 1e-2; % Time step
SPS0D = 1; % Sampling per time unit for profiler
SPS2D = 1; % Sampling per time unit for 2D arrays
SPS3D = 2; % Sampling per time unit for 3D arrays
SPS5D = 1; % Sampling per time unit for 5D arrays
SPSCP = 0; % Sampling per time unit for checkpoints/10
RESTART = 0; % To restart from last checkpoint
JOB2LOAD= 0;
%% Naming
SIMID = 'kobayashi'; % Name of the simulation
% SIMID = 'test'; % Name of the simulation
% SIMID = ['v2.8_P_',num2str(P),'_J_',num2str(J)]; % Name of the simulation
PREFIX =[];
% PREFIX = sprintf('%d_%d_',NP_P, NP_KX);
%% Options
CLOS = 0; % Closure model (0: =0 truncation, 1: semi coll, 2: Copy closure J+1 = J, P+2 = P)
NL_CLOS = 0; % nonlinear closure model (-2: nmax = jmax, -1: nmax = jmax-j, >=0 : nmax = NL_CLOS)
KERN = 0; % Kernel model (0 : GK)
INIT_PHI= 1; % Start simulation with a noisy phi and moments
%% OPTIONS AND NAMING
% Collision operator
% (0 : L.Bernstein, 1 : Dougherty, 2: Sugama, 3 : Pitch angle ; +/- for GK/DK)
CO = 1;
CLOS = 0; % Closure model (0: =0 truncation)
NL_CLOS = -1; % nonlinear closure model (-2: nmax = jmax, -1: nmax = jmax-j, >=0 : nmax = NL_CLOS)
SIMID = 'test_3D_marconi'; % Name of the simulation
% SIMID = 'HD_study'; % Name of the simulation
% SIMID = ['v3.0_P_',num2str(P),'_J_',num2str(J)]; % Name of the simulation
NON_LIN = 1; % activate non-linearity (is cancelled if KXEQ0 = 1)
% INIT options
INIT_ZF = 0; ZF_AMP = 0.0;
INIT_BLOB = 0; WIPE_TURB = 0;
%% OUTPUTS
W_DOUBLE = 1;
W_GAMMA = 1;
......@@ -62,24 +64,25 @@ W_DENS = 1;
W_TEMP = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% fixed parameters (for current study)
KX0KH = 0; A0KH = 0; % Background phi mode
KXEQ0 = 0; % put kx = 0
KPAR = 0.0; % Parellel wave vector component
LAMBDAD = 0.0;
NON_LIN = 1 *(1-KXEQ0); % activate non-linearity (is cancelled if KXEQ0 = 1)
%% unused
PMAXE = P; % Highest electron Hermite polynomial degree
JMAXE = J; % Highest '' Laguerre ''
PMAXI = P; % Highest ion Hermite polynomial degree
JMAXI = J; % Highest '' Laguerre ''
KERN = 0; % Kernel model (0 : GK)
KX0KH = 0; A0KH = 0; % Background phi mode to drive Ray-Tay inst.
KXEQ0 = 0; % put kx = 0
KPAR = 0.0; % Parellel wave vector component
LAMBDAD = 0.0;
kmax = N*pi/L;% Highest fourier mode
% kmax = 2/3*N*pi/L;% Highest fourier mode with AA
HD_CO = 0.5; % Hyper diffusivity cutoff ratio
% kmaxcut = 2.5;
MU = NU_HYP/(HD_CO*kmax)^4; % Hyperdiffusivity coefficient
NOISE0 = 1.0e-5;
ETAT = 0.0; % Temperature gradient
ETAB = 1.0; % Magnetic gradient
TAU = 1.0; % e/i temperature ratio
ETAT = 0.0; % Temperature gradient
ETAB = 1.0; % Magnetic gradient (1.0 to set R=LB)
INIT_PHI= 1; % Start simulation with a noisy phi and moments
% Compute processes distribution
Ntot = NP_P * NP_KX;
Nnodes = ceil(Ntot/48);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment