Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
170534c1
Commit
170534c1
authored
1 year ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
matlab script to plot FS
parent
e6e7be22
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/plot_toroidal_fluxtube_geom.m
+237
-0
237 additions, 0 deletions
wk/plot_toroidal_fluxtube_geom.m
with
237 additions
and
0 deletions
wk/plot_toroidal_fluxtube_geom.m
0 → 100644
+
237
−
0
View file @
170534c1
gyacomodir
=
pwd
;
gyacomodir
=
gyacomodir
(
1
:
end
-
2
);
% get code directory
addpath
(
genpath
([
gyacomodir
,
'matlab'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/plot'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/compute'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/load'
]))
% ... add
default_plots_options
% Torus flux tube geometry
Nx
=
128
;
Ny
=
128
;
Nz
=
64
;
Nturns
=
1
;
x
=
linspace
(
-
60
,
60
,
Nx
)
*
0.001
;
y
=
linspace
(
-
60
,
60
,
Ny
)
*
0.001
;
FIELD
=
ones
(
Nx
,
Ny
,
Nz
);
z
=
linspace
(
-
Nturns
*
pi
,
Nturns
*
pi
,
Nz
);
N_field_lines
=
120
;
N_magn_flux_surf
=
1
;
openangle
=
pi
/
3
;
phi0
=
openangle
/
2
;
phi1
=
2
*
pi
-
openangle
/
2
;
PLT_FTUBE
=
0
;
PLT_BASIS
=
0
;
PLT_DATA
=
0
;
R0
=
1
;
% Torus major radius
Z0
=
0
;
xpoint
=
0
;
select
=
3
;
switch
select
case
1
% CBC
rho
=
0.50
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.3
;
q0
=
0.000001
;
% Flux tube safety factor
shear
=
0.8
;
kappa
=
1.0
;
s_kappa
=
0.0
;
delta
=
0.0
;
s_delta
=
0.0
;
zeta
=
0.0
;
s_zeta
=
0.0
;
case
2
% CBC
rho
=
0.50
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.18
;
q0
=
1.4
;
% Flux tube safety factor
shear
=
0.8
;
kappa
=
1.0
;
s_kappa
=
0.0
;
delta
=
0.0
;
s_delta
=
0.0
;
zeta
=
0.0
;
s_zeta
=
0.0
;
case
3
% DIII-D edge
rho
=
0.90
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.3
;
q0
=
4.8
;
% Flux tube safety factor
shear
=
2.5
;
kappa
=
1.55
;
s_kappa
=
1.0
;
delta
=
0.4
;
s_delta
=
1.5
;
zeta
=
0.1
;
s_zeta
=
0.0
;
case
4
% Poloidal DIII-D
N_magn_flux_surf
=
5
;
phi0
=
0
;
phi1
=
pi
/
48
;
N_field_lines
=
0
;
rho
=
0.50
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.3
;
q0
=
4.8
;
% Flux tube safety factor
shear
=
2.5
;
kappa
=
1.55
;
s_kappa
=
2.0
;
delta
=
0.3
;
s_delta
=
3.0
;
zeta
=
0.1
;
s_zeta
=
0.0
;
case
5
% Fake x-point DIII-D
N_magn_flux_surf
=
2
;
phi0
=
0
;
phi1
=
pi
/
48
;
N_field_lines
=
0
;
rho
=
0.40
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.3
;
q0
=
4.8
;
% Flux tube safety factor
shear
=
2.5
;
kappa
=
1.0
;
s_kappa
=
0.0
;
delta
=
0.0
;
s_delta
=
0.0
;
zeta
=
0.0
;
s_zeta
=
0.0
;
xpoint
=
0.5
;
case
6
% play with DIII-D edge
rho
=
0.90
;
drho
=
0.1
;
% Torus minor radius
eps
=
0.3
;
q0
=
1.0
;
% Flux tube safety factor
Nturns
=
max
(
1
,
q0
);
shear
=
2.5
;
kappa
=
0.5
;
s_kappa
=
1.0
;
delta
=
0.0
;
s_delta
=
0.0
;
zeta
=-
1.0
;
s_zeta
=
0.0
;
end
Nptor
=
64
;
% Toroidal angle for the flux surf
% phi = linspace(0+openangle/2, 2*pi-openangle/2, Nptor);
phi
=
linspace
(
phi0
,
phi1
,
Nptor
);
theta
=
linspace
(
-
pi
,
pi
,
Nptor
)
;
% Poloidal angle
[
p
,
t
]
=
meshgrid
(
phi
,
theta
);
Tgeom
=
1
;
DIMENSIONS
=
[
600
600
1200
600
];
rho
=
rho
*
eps
;
drho
=
drho
*
eps
;
% field line coordinates
Xfl
=
@
(
z
)
(
R0
+
rho
*
cos
(
z
+
asin
(
delta
*
sin
(
z
))))
.*
cos
(
q0
*
z
);
Yfl
=
@
(
z
)
(
R0
+
rho
*
cos
(
z
+
asin
(
delta
*
sin
(
z
))))
.*
sin
(
q0
*
z
);
Zfl
=
@
(
z
)
Z0
+
kappa
*
rho
*
sin
(
z
+
zeta
*
sin
(
2
*
z
)
+
xpoint
*
cos
(
2
*
z
));
Rvec
=
@
(
z
)
[
Xfl
(
z
);
Yfl
(
z
);
Zfl
(
z
)];
% xvec shearless
xX
=
@
(
z
)
(
Xfl
(
z
)
-
R0
*
cos
(
q0
*
z
))
.
/
sqrt
((
Xfl
(
z
)
-
R0
*
cos
(
q0
*
z
))
.^
2
+
(
Yfl
(
z
)
-
R0
*
sin
(
q0
*
z
))
.^
2
+
Zfl
(
z
)
.^
2
);
xY
=
@
(
z
)
(
Yfl
(
z
)
-
R0
*
sin
(
q0
*
z
))
.
/
sqrt
((
Xfl
(
z
)
-
R0
*
cos
(
q0
*
z
))
.^
2
+
(
Yfl
(
z
)
-
R0
*
sin
(
q0
*
z
))
.^
2
+
Zfl
(
z
)
.^
2
);
xZ
=
@
(
z
)
Zfl
(
z
)
.
/
sqrt
((
Xfl
(
z
)
-
R0
*
cos
(
q0
*
z
))
.^
2
+
(
Yfl
(
z
)
-
R0
*
sin
(
q0
*
z
))
.^
2
+
Zfl
(
z
)
.^
2
);
xvec
=
@
(
z
)
[
xX
(
z
);
xY
(
z
);
xZ
(
z
)];
% bvec
bX
=
@
(
z
)
Tgeom
*
(
rho
*
cos
(
z
)
.*
cos
(
q0
*
z
)
-
q0
*
Yfl
(
z
))
.
/
sqrt
(
Tgeom
*
(
rho
*
cos
(
z
)
.*
cos
(
q0
*
z
)
-
q0
*
Yfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
)
.*
sin
(
q0
*
z
)
+
q0
*
Xfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
))
.^
2
);
bY
=
@
(
z
)
(
rho
*
cos
(
z
)
.*
sin
(
q0
*
z
)
+
q0
*
Xfl
(
z
))
.
/
sqrt
(
Tgeom
*
(
rho
*
cos
(
z
)
.*
cos
(
q0
*
z
)
-
q0
*
Yfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
)
.*
sin
(
q0
*
z
)
+
q0
*
Xfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
))
.^
2
);
bZ
=
@
(
z
)
rho
*
cos
(
z
)
.
/
sqrt
(
Tgeom
*
(
rho
*
cos
(
z
)
.*
cos
(
q0
*
z
)
-
q0
*
Yfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
)
.*
sin
(
q0
*
z
)
+
q0
*
Xfl
(
z
))
.^
2
+
(
rho
*
cos
(
z
))
.^
2
);
bvec
=
@
(
z
)
[
bX
(
z
);
bY
(
z
);
bZ
(
z
)];
% yvec = b times x
yX
=
@
(
z
)
bY
(
z
)
.*
xZ
(
z
)
-
bZ
(
z
)
.*
xY
(
z
)
.
/
sqrt
((
bY
(
z
)
.*
xZ
(
z
)
-
bZ
(
z
)
.*
xY
(
z
))
.^
2
+
(
bZ
(
z
)
.*
xX
(
z
)
-
bX
(
z
)
.*
xZ
(
z
))
.^
2
+
(
bX
(
z
)
.*
xY
(
z
)
-
bY
(
z
)
.*
xX
(
z
))
.^
2
);
yY
=
@
(
z
)
bZ
(
z
)
.*
xX
(
z
)
-
bX
(
z
)
.*
xZ
(
z
)
.
/
sqrt
((
bY
(
z
)
.*
xZ
(
z
)
-
bZ
(
z
)
.*
xY
(
z
))
.^
2
+
(
bZ
(
z
)
.*
xX
(
z
)
-
bX
(
z
)
.*
xZ
(
z
))
.^
2
+
(
bX
(
z
)
.*
xY
(
z
)
-
bY
(
z
)
.*
xX
(
z
))
.^
2
);
yZ
=
@
(
z
)
bX
(
z
)
.*
xY
(
z
)
-
bY
(
z
)
.*
xX
(
z
)
.
/
sqrt
((
bY
(
z
)
.*
xZ
(
z
)
-
bZ
(
z
)
.*
xY
(
z
))
.^
2
+
(
bZ
(
z
)
.*
xX
(
z
)
-
bX
(
z
)
.*
xZ
(
z
))
.^
2
+
(
bX
(
z
)
.*
xY
(
z
)
-
bY
(
z
)
.*
xX
(
z
))
.^
2
);
yvec
=
@
(
z
)
[
yX
(
z
);
yY
(
z
);
yZ
(
z
)];
scale
=
0.10
;
% Plot plane result
OPTIONS
.
POLARPLOT
=
0
;
OPTIONS
.
PLAN
=
'xy'
;
rhostar
=
0.1
;
[
X
,
Y
]
=
meshgrid
(
x
,
y
);
max_
=
0
;
figure
;
set
(
gcf
,
'Position'
,
DIMENSIONS
)
%plot magnetic geometry
if
N_magn_flux_surf
>
0
dr_array
=
drho
*
(
-
(
N_magn_flux_surf
-
1
):(
N_magn_flux_surf
-
1
));
Nsurf
=
numel
(
dr_array
);
clrs
=
cool
(
Nsurf
);
% clrs = clrs(end:-1:1,:);
for
is
=
1
:
Nsurf
[
xt
,
yt
,
zt
]
=
...
mag_flux_surf
...
(
t
,
p
,
R0
,
Z0
,
rho
,
dr_array
(
is
),
kappa
,
s_kappa
,
delta
,
s_delta
,
zeta
,
s_zeta
,
xpoint
);
magnetic_topo
=
surf
(
xt
,
yt
,
zt
);
hold
on
;
alpha
=
0.7
*
(
1
-
(
is
/
Nsurf
)
^
2
)
+
0.5
*
(
Nsurf
==
1
);
set
(
magnetic_topo
,
...
'edgecolor'
,
'none'
,
...
'facecolor'
,
clrs
(
is
,:),
...
'FaceAlpha'
,
alpha
);
end
H
=
light
;
end
%plot field lines
if
N_field_lines
>
0
theta
=
linspace
(
-
Nturns
*
pi
,
Nturns
*
pi
,
256
)
;
% Poloidal angle
vecfl
=
Rvec
(
theta
);
plot3
(
vecfl
(
1
,:),
vecfl
(
2
,:),
vecfl
(
3
,:),
'-b'
);
hold
on
;
% Multiple field lines
x_
=
[];
y_
=
[];
z_
=
[];
for
ifl
=
1
:
N_field_lines
-
1
% rotation for multiple field lines
t
=
q0
*
pi
*
ifl
;
x_
=
[
x_
cos
(
t
)
*
vecfl
(
1
,:)
-
sin
(
t
)
*
vecfl
(
2
,:)];
y_
=
[
y_
sin
(
t
)
*
vecfl
(
1
,:)
+
cos
(
t
)
*
vecfl
(
2
,:)];
z_
=
[
z_
vecfl
(
3
,:)];
end
plot3
(
x_
,
y_
,
z_
,
'.'
,
'color'
,[
1.0
0.6
0.6
]
*
0.8
);
hold
on
;
end
%plot fluxe tube
if
PLT_FTUBE
theta
=
linspace
(
-
Nturns
*
pi
,
Nturns
*
pi
,
64
)
;
% Poloidal angle
%store the shifts in an order (top left to bottom right)
s_x
=
rhostar
*
[
x
(
1
)
x
(
end
)
x
(
1
)
x
(
end
)];
s_y
=
rhostar
*
[
y
(
1
)
y
(
1
)
y
(
end
)
y
(
end
)];
for
i_
=
1
:
4
vx_
=
Xfl
(
theta
)
+
s_x
(
i_
)
*
xX
(
theta
)
+
s_y
(
i_
)
*
yX
(
theta
);
vy_
=
Yfl
(
theta
)
+
s_x
(
i_
)
*
xY
(
theta
)
+
s_y
(
i_
)
*
yY
(
theta
);
vz_
=
Zfl
(
theta
)
+
s_x
(
i_
)
*
xZ
(
theta
)
+
s_y
(
i_
)
*
yZ
(
theta
);
plot3
(
vx_
,
vy_
,
vz_
,
'-'
,
'color'
,[
1.0
0.6
0.6
]
*
0.8
,
'linewidth'
,
1.5
);
hold
on
;
end
end
%plot vector basis
if
PLT_BASIS
theta
=
z
;
% Poloidal angle
plot3
(
Xfl
(
theta
),
Yfl
(
theta
),
Zfl
(
theta
),
'ok'
);
hold
on
;
quiver3
(
Xfl
(
theta
),
Yfl
(
theta
),
Zfl
(
theta
),
scale
*
xX
(
theta
),
scale
*
xY
(
theta
),
scale
*
xZ
(
theta
),
0
,
'r'
);
quiver3
(
Xfl
(
theta
),
Yfl
(
theta
),
Zfl
(
theta
),
scale
*
yX
(
theta
),
scale
*
yY
(
theta
),
scale
*
yZ
(
theta
),
0
,
'g'
);
quiver3
(
Xfl
(
theta
),
Yfl
(
theta
),
Zfl
(
theta
),
scale
*
bX
(
theta
),
scale
*
bY
(
theta
),
scale
*
bZ
(
theta
),
0
,
'b'
);
end
xlabel
(
'X'
);
ylabel
(
'Y'
);
zlabel
(
'Z'
);
%Plot time dependent data
if
PLT_DATA
for
iz
=
1
:
Nz
z_
=
z
(
iz
);
Xp
=
Xfl
(
z_
)
+
X
*
xX
(
z_
)
+
Y
*
yX
(
z_
);
Yp
=
Yfl
(
z_
)
+
X
*
xY
(
z_
)
+
Y
*
yY
(
z_
);
Zp
=
Zfl
(
z_
)
+
X
*
xZ
(
z_
)
+
Y
*
yZ
(
z_
);
s
=
surface
(
Xp
,
Yp
,
Zp
,
FIELD
(:,:,
iz
)/
max
(
max
(
max
(
abs
(
FIELD
)))));
s
.
EdgeColor
=
'none'
;
colormap
(
bluewhitered
);
end
end
%
axis
equal
view
([
1
,
-
2
,
1
])
grid
on
axis
off
function
[
x
,
y
,
z
]
=
mag_flux_surf
(
theta
,
phi
,
R0
,
Z0
,
rho
,
dr
,
kap
,
s_k
,
del
,
s_d
,
zet
,
s_z
,
xp
)
rho
=
rho
+
dr
;
kap
=
kap
+
s_k
*
dr
;
del
=
del
+
s_d
*
dr
;
zet
=
zet
+
s_z
*
dr
;
x
=
(
R0
+
rho
.*
cos
(
theta
+
asin
(
del
*
sin
(
theta
))))
.*
cos
(
phi
);
y
=
(
R0
+
rho
.*
cos
(
theta
+
asin
(
del
*
sin
(
theta
))))
.*
sin
(
phi
);
% z = Z0 + kap*rho.*sin(theta + zet*sin(2*theta) + xp*cos(2*theta));
z
=
Z0
+
kap
*
rho
.*
(
sin
(
theta
+
zet
*
sin
(
2
*
theta
))
+
xp
*
sin
(
theta
+
xp
*
cos
(
theta
)));
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment