Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
3391be78
Commit
3391be78
authored
4 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
small changes in IF statements to spare computation
parent
cec45a8d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/moments_eq_rhs.F90
+55
-51
55 additions, 51 deletions
src/moments_eq_rhs.F90
with
55 additions
and
51 deletions
src/moments_eq_rhs.F90
+
55
−
51
View file @
3391be78
...
@@ -28,11 +28,11 @@ SUBROUTINE moments_eq_rhs
...
@@ -28,11 +28,11 @@ SUBROUTINE moments_eq_rhs
taui_qi_etaB
=
tau_i
/
q_i
*
eta_B
taui_qi_etaB
=
tau_i
/
q_i
*
eta_B
sigmae2_taue_o2
=
sigma_e
**
2
*
tau_e
/
2._dp
! factor of the Kernel argument
sigmae2_taue_o2
=
sigma_e
**
2
*
tau_e
/
2._dp
! factor of the Kernel argument
sigmai2_taui_o2
=
sigma_i
**
2
*
tau_i
/
2._dp
sigmai2_taui_o2
=
sigma_i
**
2
*
tau_i
/
2._dp
nu_e
=
nu
! electron-ion collision frequency (where already multiplied by 0.53
..
)
nu_e
=
nu
! electron-ion collision frequency (where already multiplied by 0.53
2
)
nu_i
=
nu
*
sigma_e
*
(
tau_i
)
**
(
-3._dp
/
2._dp
)/
SQRT2
! ion-ion collision frequ.
nu_i
=
nu
*
sigma_e
*
(
tau_i
)
**
(
-3._dp
/
2._dp
)/
SQRT2
! ion-ion collision frequ.
nu_ee
=
nu_e
/
SQRT2
! e-e coll. frequ.
nu_ee
=
nu_e
/
SQRT2
! e-e coll. frequ.
nu_ie
=
nu
*
sigma_e
**
2
! i-e coll. frequ.
nu_ie
=
nu
*
sigma_e
**
2
! i-e coll. frequ.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!! Electrons moments RHS !!!!!!!!!
!!!!!!!!! Electrons moments RHS !!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
...
@@ -59,20 +59,22 @@ SUBROUTINE moments_eq_rhs
...
@@ -59,20 +59,22 @@ SUBROUTINE moments_eq_rhs
!! Collision operator pj terms
!! Collision operator pj terms
xCapj
=
-
nu_e
*
(
ip_dp
+
2._dp
*
ij_dp
)
!DK Lenard-Bernstein basis
xCapj
=
-
nu_e
*
(
ip_dp
+
2._dp
*
ij_dp
)
!DK Lenard-Bernstein basis
! Dougherty part
! Dougherty part
IF
((
ip
.EQ.
3
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj20
IF
(
CO
.EQ.
-2
)
THEN
xCa20
=
nu_e
*
2._dp
/
3._dp
IF
((
ip
.EQ.
3
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj20
xCa01
=
-
SQRT2
*
xCa20
xCa20
=
nu_e
*
2._dp
/
3._dp
xCa10
=
0._dp
xCa01
=
-
SQRT2
*
xCa20
ELSEIF
((
ip
.EQ.
1
)
.AND.
(
ij
.EQ.
2
))
THEN
! kronecker pj01
xCa10
=
0._dp
xCa20
=
-
nu_e
*
SQRT2
*
2._dp
/
3._dp
ELSEIF
((
ip
.EQ.
1
)
.AND.
(
ij
.EQ.
2
))
THEN
! kronecker pj01
xCa01
=
-
SQRT2
*
xCa20
xCa20
=
-
nu_e
*
SQRT2
*
2._dp
/
3._dp
xCa10
=
0._dp
xCa01
=
-
SQRT2
*
xCa20
ELSEIF
((
ip
.EQ.
2
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj10
xCa10
=
0._dp
xCa20
=
0._dp
ELSEIF
((
ip
.EQ.
2
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj10
xCa01
=
0._dp
xCa20
=
0._dp
xCa10
=
nu_e
xCa01
=
0._dp
ELSE
xCa10
=
nu_e
xCa20
=
0._dp
;
xCa01
=
0._dp
;
xCa10
=
0._dp
ELSE
xCa20
=
0._dp
;
xCa01
=
0._dp
;
xCa10
=
0._dp
ENDIF
ENDIF
ENDIF
!! Electrostatic potential pj terms
!! Electrostatic potential pj terms
...
@@ -152,7 +154,7 @@ SUBROUTINE moments_eq_rhs
...
@@ -152,7 +154,7 @@ SUBROUTINE moments_eq_rhs
TColl
=
xCapj
*
moments_e
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)&
TColl
=
xCapj
*
moments_e
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)&
+
TColl20
+
TColl01
+
TColl10
+
TColl20
+
TColl01
+
TColl10
ELSEIF
(
CO
.EQ.
-1
)
THEN
!
!!
Full Coulomb (COSOlver matrix)
!!!
ELSEIF
(
CO
.EQ.
-1
)
THEN
! Full Coulomb (COSOlver matrix)
TColl
=
0._dp
! Initialization
TColl
=
0._dp
! Initialization
...
@@ -171,7 +173,7 @@ SUBROUTINE moments_eq_rhs
...
@@ -171,7 +173,7 @@ SUBROUTINE moments_eq_rhs
END
DO
jloopei
END
DO
jloopei
ENDDO
ploopei
ENDDO
ploopei
ELSE
! Len
h
ard Bernstein
ELSE
IF
(
CO
.EQ.
0
)
THEN
! Lenard Bernstein
TColl
=
xCapj
*
moments_e
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)
TColl
=
xCapj
*
moments_e
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)
ENDIF
ENDIF
...
@@ -222,20 +224,22 @@ SUBROUTINE moments_eq_rhs
...
@@ -222,20 +224,22 @@ SUBROUTINE moments_eq_rhs
!! Collision operator pj terms
!! Collision operator pj terms
xCapj
=
-
nu_i
*
(
ip_dp
+
2._dp
*
ij_dp
)
!DK Lenard-Bernstein basis
xCapj
=
-
nu_i
*
(
ip_dp
+
2._dp
*
ij_dp
)
!DK Lenard-Bernstein basis
! Dougherty part
! Dougherty part
IF
((
ip
.EQ.
3
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj20
IF
(
CO
.EQ.
-2
)
THEN
xCa20
=
nu_i
*
2._dp
/
3._dp
IF
((
ip
.EQ.
3
)
.AND.
(
ij
.EQ.
1
))
THEN
! kronecker pj20
xCa01
=
-
SQRT2
*
xCa20
xCa20
=
nu_i
*
2._dp
/
3._dp
xCa10
=
0._dp
xCa01
=
-
SQRT2
*
xCa20
ELSEIF
((
ip
.EQ.
1
)
.AND.
(
ij
.EQ.
2
))
THEN
! kronecker pj01
xCa10
=
0._dp
xCa20
=
-
nu_i
*
SQRT2
*
2._dp
/
3._dp
ELSEIF
((
ip
.EQ.
1
)
.AND.
(
ij
.EQ.
2
))
THEN
! kronecker pj01
xCa01
=
-
SQRT2
*
xCa20
xCa20
=
-
nu_i
*
SQRT2
*
2._dp
/
3._dp
xCa10
=
0._dp
xCa01
=
-
SQRT2
*
xCa20
ELSEIF
((
ip
.EQ.
2
)
.AND.
(
ij
.EQ.
1
))
THEN
xCa10
=
0._dp
xCa20
=
0._dp
ELSEIF
((
ip
.EQ.
2
)
.AND.
(
ij
.EQ.
1
))
THEN
xCa01
=
0._dp
xCa20
=
0._dp
xCa10
=
nu_i
xCa01
=
0._dp
ELSE
xCa10
=
nu_i
xCa20
=
0._dp
;
xCa01
=
0._dp
;
xCa10
=
0._dp
ELSE
xCa20
=
0._dp
;
xCa01
=
0._dp
;
xCa10
=
0._dp
ENDIF
ENDIF
ENDIF
!! Electrostatic potential pj terms
!! Electrostatic potential pj terms
...
@@ -294,7 +298,7 @@ SUBROUTINE moments_eq_rhs
...
@@ -294,7 +298,7 @@ SUBROUTINE moments_eq_rhs
ENDIF
ENDIF
!! Collision
!! Collision
IF
(
CO
.EQ.
-2
)
THEN
! Dougherty Collision terms
IF
(
CO
.EQ.
-2
)
THEN
! Dougherty Collision terms
IF
(
(
pmaxi
.GE.
2
)
)
THEN
! OoB check
IF
(
(
pmaxi
.GE.
2
)
)
THEN
! OoB check
TColl20
=
xCa20
*
moments_i
(
3
,
1
,
ikr
,
ikz
,
updatetlevel
)
TColl20
=
xCa20
*
moments_i
(
3
,
1
,
ikr
,
ikz
,
updatetlevel
)
ELSE
ELSE
...
@@ -315,28 +319,28 @@ SUBROUTINE moments_eq_rhs
...
@@ -315,28 +319,28 @@ SUBROUTINE moments_eq_rhs
TColl
=
xCapj
*
moments_i
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)&
TColl
=
xCapj
*
moments_i
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)&
+
TColl20
+
TColl01
+
TColl10
+
TColl20
+
TColl01
+
TColl10
ELSEIF
(
CO
.EQ.
-1
)
THEN
!!! Full Coulomb (COSOlver matrix) !!!
ELSEIF
(
CO
.EQ.
-1
)
THEN
!!! Full Coulomb (COSOlver matrix) !!!
TColl
=
0._dp
! Initialization
TColl
=
0._dp
! Initialization
ploopii
:
DO
ip2
=
1
,
pmaxi
! sum the electron-self and electron-ion test terms
ploopii
:
DO
ip2
=
1
,
pmaxi
! sum the electron-self and electron-ion test terms
jloopii
:
DO
ij2
=
1
,
jmaxi
jloopii
:
DO
ij2
=
1
,
jmaxi
TColl
=
TColl
-
moments_i
(
ip2
,
ij2
,
ikr
,
ikz
,
updatetlevel
)
&
TColl
=
TColl
-
moments_i
(
ip2
,
ij2
,
ikr
,
ikz
,
updatetlevel
)
&
*
(
nu_ie
*
CiepjT
(
bari
(
ip
-1
,
ij
-1
),
bari
(
ip2
-1
,
ij2
-1
))
&
*
(
nu_ie
*
CiepjT
(
bari
(
ip
-1
,
ij
-1
),
bari
(
ip2
-1
,
ij2
-1
))
&
+
nu_i
*
Ciipj
(
bari
(
ip
-1
,
ij
-1
),
bari
(
ip2
-1
,
ij2
-1
)))
+
nu_i
*
Ciipj
(
bari
(
ip
-1
,
ij
-1
),
bari
(
ip2
-1
,
ij2
-1
)))
ENDDO
jloopii
ENDDO
jloopii
ENDDO
ploopii
ENDDO
ploopii
ploopie
:
DO
ip2
=
1
,
pmaxe
! sum the electron-ion field terms
ploopie
:
DO
ip2
=
1
,
pmaxe
! sum the electron-ion field terms
jloopie
:
DO
ij2
=
1
,
jmaxe
jloopie
:
DO
ij2
=
1
,
jmaxe
TColl
=
TColl
-
moments_e
(
ip2
,
ij2
,
ikr
,
ikz
,
updatetlevel
)
&
TColl
=
TColl
-
moments_e
(
ip2
,
ij2
,
ikr
,
ikz
,
updatetlevel
)
&
*
(
nu_ie
*
CiepjF
(
bari
(
ip
-1
,
ij
-1
),
bare
(
ip2
-1
,
ij2
-1
)))
*
(
nu_ie
*
CiepjF
(
bari
(
ip
-1
,
ij
-1
),
bare
(
ip2
-1
,
ij2
-1
)))
ENDDO
jloopie
ENDDO
jloopie
ENDDO
ploopie
ENDDO
ploopie
ELSE
! Lenhard Bernstein
ELSE
IF
(
CO
.EQ.
0
)
THEN
! Lenhard Bernstein
TColl
=
xCapj
*
moments_
e
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)
TColl
=
xCapj
*
moments_
i
(
ip
,
ij
,
ikr
,
ikz
,
updatetlevel
)
ENDIF
ENDIF
!! Electrical potential term
!! Electrical potential term
IF
(
(
ip
.EQ.
1
)
.OR.
(
ip
.EQ.
3
)
)
THEN
! kronecker p0 or p2
IF
(
(
ip
.EQ.
1
)
.OR.
(
ip
.EQ.
3
)
)
THEN
! kronecker p0 or p2
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment