Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
3fe3d63c
Commit
3fe3d63c
authored
3 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
correction of DGGK and tentative to unify DGGK_e and DGGK_i routines
parent
a8f51d36
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/collision_mod.F90
+224
-82
224 additions, 82 deletions
src/collision_mod.F90
src/moments_eq_rhs.F90
+2
-0
2 additions, 0 deletions
src/moments_eq_rhs.F90
with
226 additions
and
82 deletions
src/collision_mod.F90
+
224
−
82
View file @
3fe3d63c
...
...
@@ -11,12 +11,138 @@ USE utility
IMPLICIT
NONE
PUBLIC
::
compute_TColl
PUBLIC
::
DoughertyGK_e
,
DoughertyGK_i
PUBLIC
::
DoughertyGK_e
,
DoughertyGK_i
!, DoughertyGK
PUBLIC
::
load_COSOlver_mat
PUBLIC
::
apply_COSOlver_mat_e
,
apply_COSOlver_mat_i
CONTAINS
! !******************************************************************************!
! !! Doughtery gyrokinetic collision operator for electrons
! !******************************************************************************!
! SUBROUTINE DoughertyGK(ip_,ij_,ikr_,ikz_,TColl_,specie_)
! IMPLICIT NONE
! INTEGER, INTENT(IN) :: ip_,ij_,ikr_,ikz_
! CHARACTER(len = 1), INTENT(IN) :: specie_
! COMPLEX(dp), INTENT(INOUT) :: TColl_
!
! COMPLEX(dp) :: n_,upar_,uperp_,Tpar_, Tperp_
! COMPLEX(dp) :: Dpj, Ppj, T_
! COMPLEX(dp) :: nadiab_moment_0j
! COMPLEX(dp), DIMENSION(:,:), ALLOCATABLE :: moments_
! REAL(dp), DIMENSION(:), ALLOCATABLE :: kernel_
! REAL(dp) :: Knp0, Knp1, Knm1
! INTEGER :: in_, jmax_
! REAL(dp) :: n_dp, j_dp, p_dp, b_, bo2_2_, q_tau_, nu_
!
! !** Auxiliary variables **
! !! If electrons !!
! IF ( specie_ .EQ. 'e' ) THEN
! p_dp = REAL(parray_e(ip_),dp)
! j_dp = REAL(jarray_e(ij_),dp)
! jmax_ = jmaxe
! bo2_2_ = (krarray(ikr_)**2 + kzarray(ikz_)**2) * sigmae2_taue_o2 ! this is (be/2)^2
! b_ = 2_dp*SQRT(bo2_2_) ! this is be
! q_tau_ = q_e/tau_e
! nu_ = nu_ee
! CALL allocate_array(moments_, ips_e,ipe_e, ijs_e,ije_e)
! moments_(ips_e:ipe_e,ijs_e:ije_e) = moments_e(ips_e:ipe_e,ijs_e:ije_e,ikr_,ikz_,updatetlevel)
! CALL allocate_array(kernel_, ijs_e,ije_e)
! kernel_(ijsg_e:ijeg_e) = kernel_e(ijsg_e:ijeg_e,ikr_,ikz_)
! !! If ions !!
! ELSEIF ( specie_ .EQ. 'i') THEN
! p_dp = REAL(parray_i(ip_),dp)
! j_dp = REAL(jarray_i(ij_),dp)
! jmax_ = jmaxi
! bo2_2_ = (krarray(ikr_)**2 + kzarray(ikz_)**2) * sigmai2_taui_o2 ! this is (bi/2)^2
! b_ = 2_dp*SQRT(bo2_2_) ! this is be
! q_tau_ = q_i/tau_i
! nu_ = nu_i
! CALL allocate_array(moments_, ips_i,ipe_i, ijs_i,ije_i)
! moments_(ips_i:ipe_i,ijs_i:ije_i) = moments_i(ips_i:ipe_i,ijs_i:ije_i,ikr_,ikz_,updatetlevel)
! CALL allocate_array(kernel_, ijsg_i,ijeg_i)
! kernel_(ijsg_i:ijeg_i) = kernel_i(ijsg_i:ijeg_i,ikr_,ikz_)
! ENDIF
!
! !** Assembling collison operator **
! ! Velocity-space diffusion (similar to Lenhard Bernstein)
! ! -nuee (p + 2j + b^2/2) Nepj
! TColl_ = -(p_dp + 2._dp*j_dp + 2._dp*bo2_2_)*moments_(ip_,ij_)
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! IF( p_dp .EQ. 0 ) THEN ! Kronecker p0
! ! Get adiabatic moment
! TColl_ = TColl_ - (p_dp + 2._dp*j_dp + 2._dp*bo2_2_) * q_tau_ * kernel_(ij_)*phi(ikr_,ikz_)
! !** build required fluid moments **
! n_ = 0._dp
! upar_ = 0._dp; uperp_ = 0._dp
! Tpar_ = 0._dp; Tperp_ = 0._dp
! DO in_ = 1,jmaxe+1
! n_dp = REAL(in_-1,dp)
! ! Store the kernels for sparing readings
! Knp0 = kernel_(in_)
! Knp1 = kernel_(in_+1)
! Knm1 = kernel_(in_-1)
! ! Nonadiabatic moments (only different from moments when p=0)
! nadiab_moment_0j = moments_(1,in_) + q_tau_ * Knp0 *phi(ikr_,ikz_)
! ! Density
! n_ = n_ + Knp0 * nadiab_moment_0j
! ! Perpendicular velocity
! uperp_ = uperp_ + b_*0.5_dp*(Knp0 - Knm1) * nadiab_moment_0j
! ! Parallel temperature
! Tpar_ = Tpar_ + Knp0 * (SQRT2*moments_(3,in_) + nadiab_moment_0j)
! ! Perpendicular temperature
! Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j
! ENDDO
! T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_
! ! Add energy restoring term
! TColl_ = TColl_ + T_* 4._dp * j_dp * kernel_(ij_)
! TColl_ = TColl_ - T_* 2._dp * (j_dp + 1._dp) * kernel_(ij_+1)
! TColl_ = TColl_ - T_* 2._dp * j_dp * kernel_(ij_-1)
! TColl_ = TColl_ + uperp_*b_* (kernel_(ij_) - kernel_(ij_-1))
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ELSEIF( p_dp .eq. 1 ) THEN ! kronecker p1
! !** build required fluid moments **
! upar_ = 0._dp
! DO in_ = 1,jmax_+1
! ! Parallel velocity
! upar_ = upar_ + Kernel_(in_) * moments_(2,in_)
! ENDDO
! TColl_ = TColl_ + upar_*Kernel_(ij_)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ELSEIF( p_dp .eq. 2 ) THEN ! kronecker p2
! !** build required fluid moments **
! n_ = 0._dp
! upar_ = 0._dp; uperp_ = 0._dp
! Tpar_ = 0._dp; Tperp_ = 0._dp
! DO in_ = 1,jmaxe+1
! n_dp = REAL(in_-1,dp)
! ! Store the kernels for sparing readings
! Knp0 = kernel_(in_)
! Knp1 = kernel_(in_+1)
! Knm1 = kernel_(in_-1)
! ! Nonadiabatic moments (only different from moments when p=0)
! nadiab_moment_0j = moments_(1,in_) + q_tau_*Knp0*phi(ikr_,ikz_)
! ! Density
! n_ = n_ + Knp0 * nadiab_moment_0j
! ! Parallel temperature
! Tpar_ = Tpar_ + Knp0 * (SQRT2*moments_(3,in_) + nadiab_moment_0j)
! ! Perpendicular temperature
! Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1) * Knp1 - n_dp * Knm1)*nadiab_moment_0j
! ENDDO
! T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_
! TColl_ = TColl_ + T_*SQRT2*kernel_(ij_)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! ENDIF
! ! Multiply by specieslike collision coefficient
! TColl_ = nu_ * TColl_
!
! END SUBROUTINE DoughertyGK
!******************************************************************************!
!! Doughtery gyrokinetic collision operator for electrons
...
...
@@ -28,84 +154,90 @@ CONTAINS
COMPLEX
(
dp
)
::
n_
,
upar_
,
uperp_
,
Tpar_
,
Tperp_
COMPLEX
(
dp
)
::
Dpj
,
Ppj
,
T_
,
be_
COMPLEX
(
dp
)
::
nadiab_moment_0j
,
nadiab_moment_0jp1
,
nadiab_moment_0jm1
COMPLEX
(
dp
)
::
nadiab_moment_0j
REAL
(
dp
)
::
Knp0
,
Knp1
,
Knm1
INTEGER
::
in_
REAL
(
dp
)
::
n_dp
,
j_dp
,
p_dp
,
be_2
,
q_e_tau_e
!** Auxiliary variables **
p_dp
=
REAL
(
parray_e
(
ip_
),
dp
)
j_dp
=
REAL
(
jarray_e
(
ij_
),
dp
)
be_2
=
(
krarray
(
ikr_
)
**
2
+
kzarray
(
ikz_
)
**
2
)
*
sigmae2_taue_o2
be_
=
SQRT
(
2._dp
*
be_2
)
be_2
=
(
krarray
(
ikr_
)
**
2
+
kzarray
(
ikz_
)
**
2
)
*
sigmae2_taue_o2
! this is (be/2)^2
! ibe_ = imagu*2._dp*SQRT(be_2)
be_
=
2_dp
*
SQRT
(
be_2
)
! this is be
q_e_tau_e
=
q_e
/
tau_e
!** Assembling collison operator **
! Velocity-space diffusion (similar to Lenhard Bernstein)
TColl_
=
-
(
p_dp
+
2._dp
*
j_dp
+
be_2
)
*
moments_e
(
ip_
,
ij_
,
ikr_
,
ikz_
,
updatetlevel
)
! -nuee (p + 2j + b^2/2) Nepj
TColl_
=
-
(
p_dp
+
2._dp
*
j_dp
+
2._dp
*
be_2
)
*
moments_e
(
ip_
,
ij_
,
ikr_
,
ikz_
,
updatetlevel
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF
(
p_dp
.EQ.
0
)
THEN
! Kronecker p0
! Get adiabatic moment
TColl_
=
TColl_
-
(
p_dp
+
2._dp
*
j_dp
+
be_2
)
*
q_e_tau_e
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
TColl_
=
TColl_
-
(
p_dp
+
2._dp
*
j_dp
+
2._dp
*
be_2
)
*
q_e_tau_e
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
!** build required fluid moments **
n_
=
0._dp
upar_
=
0._dp
;
uperp_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxe
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Store the kernels for sparing readings
Knp0
=
Kernel_e
(
in_
,
ikr_
,
ikz_
)
Knp1
=
Kernel_e
(
in_
+1
,
ikr_
,
ikz_
)
Knm1
=
Kernel_e
(
in_
-1
,
ikr_
,
ikz_
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_e
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jp1
=
moments_e
(
1
,
in_
+1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
+1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jm1
=
moments_e
(
1
,
in_
-1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
-1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0j
=
moments_e
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
Knp0
*
phi
(
ikr_
,
ikz_
)
! Density
n_
=
n_
+
K
ernel_e
(
in_
,
ikr_
,
ikz_
)
*
nadiab_moment_0j
n_
=
n_
+
K
np0
*
nadiab_moment_0j
! Perpendicular velocity
uperp_
=
uperp_
+
be_
*
0.5_dp
*
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
(
nadiab_moment_0j
-
nadiab_moment_0j
p1
)
uperp_
=
uperp_
+
be_
*
0.5_dp
*
(
Knp0
-
Knm1
)
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
K
ernel_e
(
in_
,
ikr_
,
ikz_
)
*
(
SQRT2
*
moments_e
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
Tpar_
=
Tpar_
+
K
np0
*
(
SQRT2
*
moments_e
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
((
2._dp
*
n_dp
+1._dp
)
*
nadiab_moment_0j
&
-
n_dp
*
nadiab_moment_0jm1
&
-
(
n_dp
+1
)
*
nadiab_moment_0jp1
)
Tperp_
=
Tperp_
+
((
2._dp
*
n_dp
+1._dp
)
*
Knp0
-
(
n_dp
+1._dp
)
*
Knp1
-
n_dp
*
Knm1
)
*
nadiab_moment_0j
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
! Add energy restoring term
TColl_
=
TColl_
+
T_
*
4._dp
*
j_dp
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
TColl_
=
TColl_
+
T_
*
4._dp
*
j_dp
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
TColl_
=
TColl_
-
T_
*
2._dp
*
(
j_dp
+
1._dp
)
*
Kernel_e
(
ij_
+1
,
ikr_
,
ikz_
)
TColl_
=
TColl_
-
T_
*
2._dp
*
j_dp
*
Kernel_e
(
ij_
-1
,
ikr_
,
ikz_
)
TColl_
=
TColl_
+
uperp_
*
be_
*
(
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
-
Kernel_e
(
ij_
-1
,
ikr_
,
ikz_
))
TColl_
=
TColl_
+
uperp_
*
be_
*
(
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
-
Kernel_e
(
ij_
-1
,
ikr_
,
ikz_
))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ELSEIF
(
p_dp
.eq.
1
)
THEN
! kronecker p1
!** build required fluid moments **
upar_
=
0._dp
DO
in_
=
1
,
jmaxe
+1
! Parallel velocity
upar_
=
upar_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
moments_e
(
2
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
ENDDO
!** build required fluid moments **
upar_
=
0._dp
DO
in_
=
1
,
jmaxe
+1
! Parallel velocity
upar_
=
upar_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
moments_e
(
2
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
ENDDO
TColl_
=
TColl_
+
upar_
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ELSEIF
(
p_dp
.eq.
2
)
THEN
! kronecker p2
!** build required fluid moments **
n_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxe
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_e
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)/
tau_e
nadiab_moment_0jp1
=
moments_e
(
1
,
in_
+1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
+1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)/
tau_e
nadiab_moment_0jm1
=
moments_e
(
1
,
in_
-1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
kernel_e
(
in_
-1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)/
tau_e
! Density
n_
=
n_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
(
SQRT2
*
moments_e
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
Kernel_e
(
in_
,
ikr_
,
ikz_
)
*
((
2._dp
*
n_dp
+1._dp
)
*
nadiab_moment_0j
-
n_dp
*
nadiab_moment_0jm1
-
(
n_dp
+1
)
*
nadiab_moment_0jp1
)
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
!** build required fluid moments **
n_
=
0._dp
upar_
=
0._dp
;
uperp_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxe
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Store the kernels for sparing readings
Knp0
=
Kernel_e
(
in_
,
ikr_
,
ikz_
)
Knp1
=
Kernel_e
(
in_
+1
,
ikr_
,
ikz_
)
Knm1
=
Kernel_e
(
in_
-1
,
ikr_
,
ikz_
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_e
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_e_tau_e
*
Knp0
*
phi
(
ikr_
,
ikz_
)
! Density
n_
=
n_
+
Knp0
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
Knp0
*
(
SQRT2
*
moments_e
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
((
2._dp
*
n_dp
+1._dp
)
*
Knp0
-
(
n_dp
+1
)
*
Knp1
-
n_dp
*
Knm1
)
*
nadiab_moment_0j
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
TColl_
=
TColl_
+
T_
*
SQRT2
*
Kernel_e
(
ij_
,
ikr_
,
ikz_
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
...
...
@@ -114,9 +246,9 @@ CONTAINS
TColl_
=
nu_ee
*
TColl_
END
SUBROUTINE
DoughertyGK_e
!******************************************************************************!
!! Doughtery gyrokinetic collision operator for electrons
!! Doughtery gyrokinetic collision operator for ions
!******************************************************************************!
SUBROUTINE
DoughertyGK_i
(
ip_
,
ij_
,
ikr_
,
ikz_
,
TColl_
)
IMPLICIT
NONE
INTEGER
,
INTENT
(
IN
)
::
ip_
,
ij_
,
ikr_
,
ikz_
...
...
@@ -124,84 +256,94 @@ CONTAINS
COMPLEX
(
dp
)
::
n_
,
upar_
,
uperp_
,
Tpar_
,
Tperp_
COMPLEX
(
dp
)
::
Dpj
,
Ppj
,
T_
,
bi_
COMPLEX
(
dp
)
::
nadiab_moment_0j
,
nadiab_moment_0jp1
,
nadiab_moment_0jm1
COMPLEX
(
dp
)
::
nadiab_moment_0j
REAL
(
dp
)
::
Knp0
,
Knp1
,
Knm1
INTEGER
::
in_
REAL
(
dp
)
::
n_dp
,
j_dp
,
p_dp
,
bi_2
,
q_i_tau_i
!** Auxiliary variables **
p_dp
=
REAL
(
parray_i
(
ip_
),
dp
)
j_dp
=
REAL
(
jarray_i
(
ij_
),
dp
)
bi_2
=
(
krarray
(
ikr_
)
**
2
+
kzarray
(
ikz_
)
**
2
)
*
sigmai2_taui_o2
bi_
=
SQRT
(
2._dp
*
bi_2
)
bi_2
=
(
krarray
(
ikr_
)
**
2
+
kzarray
(
ikz_
)
**
2
)
*
sigmai2_taui_o2
! this is (bi/2)^2
bi_
=
2_dp
*
SQRT
(
bi_2
)
! this is be
q_i_tau_i
=
q_i
/
tau_i
!** Assembling collison operator **
! Velocity-space diffusion (similar to Lenhard Bernstein)
TColl_
=
-
(
p_dp
+
2._dp
*
j_dp
+
bi_2
)
*
moments_i
(
ip_
,
ij_
,
ikr_
,
ikz_
,
updatetlevel
)
! -nui (p + 2j + b^2/2) Nipj
TColl_
=
-
(
p_dp
+
2._dp
*
j_dp
+
2._dp
*
bi_2
)
*
moments_i
(
ip_
,
ij_
,
ikr_
,
ikz_
,
updatetlevel
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF
(
p_dp
.EQ.
0
)
THEN
! Kronecker p0
! Get adiabatic moment
TColl_
=
TColl_
-
(
p_dp
+
2._dp
*
j_dp
+
bi_2
)
*
q_i_tau_i
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
TColl_
=
TColl_
-
(
p_dp
+
2._dp
*
j_dp
+
2._dp
*
bi_2
)
*
q_i_tau_i
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
!** build required fluid moments **
n_
=
0._dp
upar_
=
0._dp
;
uperp_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxi
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Store the kernels for sparing readings
Knp0
=
Kernel_i
(
in_
,
ikr_
,
ikz_
)
Knp1
=
Kernel_i
(
in_
+1
,
ikr_
,
ikz_
)
Knm1
=
Kernel_i
(
in_
-1
,
ikr_
,
ikz_
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_i
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jp1
=
moments_i
(
1
,
in_
+1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
+1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jm1
=
moments_i
(
1
,
in_
-1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
-1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0j
=
moments_i
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
! Density
n_
=
n_
+
K
ernel_i
(
in_
,
ikr_
,
ikz_
)
*
nadiab_moment_0j
n_
=
n_
+
K
np0
*
nadiab_moment_0j
! Perpendicular velocity
uperp_
=
uperp_
+
bi_
*
0.5_dp
*
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
(
nadiab_moment_0j
-
nadiab_moment_0jp1
)
! uperp_ = uperp_ + ibi_*0.5_dp*Kernel_i(in_,ikr_,ikz_) * (nadiab_moment_0j - nadiab_moment_0jp1)
! uperp_ = uperp_ + b_i*0.5_dp*Kernel_i(in_,ikr_,ikz_) * (nadiab_moment_0j - nadiab_moment_0jp1)
uperp_
=
uperp_
+
bi_
*
0.5_dp
*
(
Knp0
-
Knm1
)
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
K
ernel_i
(
in_
,
ikr_
,
ikz_
)
*
(
SQRT2
*
moments_i
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
Tpar_
=
Tpar_
+
K
np0
*
(
SQRT2
*
moments_i
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
((
2._dp
*
n_dp
+1._dp
)
*
nadiab_moment_0j
&
-
n_dp
*
nadiab_moment_0jm1
&
-
(
n_dp
+1
)
*
nadiab_moment_0jp1
)
! Tperp_ = Tperp_ + Kernel_i(in_,ikr_,ikz_) * ((2._dp*n_dp+1._dp)* nadiab_moment_0j &
! - n_dp * nadiab_moment_0jm1 &
! - (n_dp+1)* nadiab_moment_0jp1)
Tperp_
=
Tperp_
+
((
2._dp
*
n_dp
+1._dp
)
*
Knp0
-
(
n_dp
+1
)
*
Knp1
-
n_dp
*
Knm1
)
*
nadiab_moment_0j
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
! Add energy restoring term
TColl_
=
TColl_
+
T_
*
4._dp
*
j_dp
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
TColl_
=
TColl_
+
T_
*
4._dp
*
j_dp
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
TColl_
=
TColl_
-
T_
*
2._dp
*
(
j_dp
+
1._dp
)
*
Kernel_i
(
ij_
+1
,
ikr_
,
ikz_
)
TColl_
=
TColl_
-
T_
*
2._dp
*
j_dp
*
Kernel_i
(
ij_
-1
,
ikr_
,
ikz_
)
TColl_
=
TColl_
+
uperp_
*
bi_
*
(
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
-
Kernel_i
(
ij_
-1
,
ikr_
,
ikz_
))
TColl_
=
TColl_
+
uperp_
*
bi_
*
(
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
-
Kernel_i
(
ij_
-1
,
ikr_
,
ikz_
))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ELSEIF
(
p_dp
.eq.
1
)
THEN
! kronecker p1
!** build required fluid moments **
upar_
=
0._dp
DO
in_
=
1
,
jmaxi
+1
! Parallel velocity
upar_
=
upar_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
moments_i
(
2
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
ENDDO
!** build required fluid moments **
upar_
=
0._dp
DO
in_
=
1
,
jmaxi
+1
! Parallel velocity
upar_
=
upar_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
moments_i
(
2
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
ENDDO
TColl_
=
TColl_
+
upar_
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ELSEIF
(
p_dp
.eq.
2
)
THEN
! kronecker p2
!** build required fluid moments **
n_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxi
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_i
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jp1
=
moments_i
(
1
,
in_
+1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
+1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
nadiab_moment_0jm1
=
moments_i
(
1
,
in_
-1
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
kernel_i
(
in_
-1
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
! Density
n_
=
n_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
(
SQRT2
*
moments_i
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
((
2._dp
*
n_dp
+1._dp
)
*
nadiab_moment_0j
-
n_dp
*
nadiab_moment_0jm1
-
(
n_dp
+1
)
*
nadiab_moment_0jp1
)
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
!** build required fluid moments **
n_
=
0._dp
upar_
=
0._dp
;
uperp_
=
0._dp
Tpar_
=
0._dp
;
Tperp_
=
0._dp
DO
in_
=
1
,
jmaxi
+1
n_dp
=
REAL
(
in_
-1
,
dp
)
! Store the kernels for sparing readings
Knp0
=
Kernel_i
(
in_
,
ikr_
,
ikz_
)
Knp1
=
Kernel_i
(
in_
+1
,
ikr_
,
ikz_
)
Knm1
=
Kernel_i
(
in_
-1
,
ikr_
,
ikz_
)
! Nonadiabatic moments (only different from moments when p=0)
nadiab_moment_0j
=
moments_i
(
1
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
q_i_tau_i
*
Kernel_i
(
in_
,
ikr_
,
ikz_
)
*
phi
(
ikr_
,
ikz_
)
! Density
n_
=
n_
+
Knp0
*
nadiab_moment_0j
! Parallel temperature
Tpar_
=
Tpar_
+
Knp0
*
(
SQRT2
*
moments_i
(
3
,
in_
,
ikr_
,
ikz_
,
updatetlevel
)
+
nadiab_moment_0j
)
! Perpendicular temperature
Tperp_
=
Tperp_
+
((
2._dp
*
n_dp
+1._dp
)
*
Knp0
-
(
n_dp
+1
)
*
Knp1
-
n_dp
*
Knm1
)
*
nadiab_moment_0j
ENDDO
T_
=
(
Tpar_
+
2._dp
*
Tperp_
)/
3._dp
-
n_
TColl_
=
TColl_
+
T_
*
SQRT2
*
Kernel_i
(
ij_
,
ikr_
,
ikz_
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
...
...
This diff is collapsed.
Click to expand it.
src/moments_eq_rhs.F90
+
2
−
0
View file @
3fe3d63c
...
...
@@ -129,6 +129,7 @@ SUBROUTINE moments_eq_rhs_e
ELSEIF
(
CO
.EQ.
1
)
THEN
! GK Dougherty
CALL
DoughertyGK_e
(
ip
,
ij
,
ikr
,
ikz
,
TColl
)
! CALL DoughertyGK(ip,ij,ikr,ikz,TColl,'e')
ELSE
! COSOLver matrix
TColl
=
TColl_e
(
ip
,
ij
,
ikr
,
ikz
)
...
...
@@ -316,6 +317,7 @@ SUBROUTINE moments_eq_rhs_i
ELSEIF
(
CO
.EQ.
1
)
THEN
! GK Dougherty
CALL
DoughertyGK_i
(
ip
,
ij
,
ikr
,
ikz
,
TColl
)
! CALL DoughertyGK(ip,ij,ikr,ikz,TColl,'i')
ELSE
! COSOLver matrix (Sugama, Coulomb)
TColl
=
TColl_i
(
ip
,
ij
,
ikr
,
ikz
)
ENDIF
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment