Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
5b1c9593
Commit
5b1c9593
authored
2 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
script for linear entropy mode runs
parent
2dd4336c
Loading
Loading
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/lin_EPY.m
+179
-0
179 additions, 0 deletions
wk/lin_EPY.m
with
179 additions
and
0 deletions
wk/lin_EPY.m
0 → 100644
+
179
−
0
View file @
5b1c9593
%% QUICK RUN SCRIPT for linear entropy mode in a Zpinch
% This script create a directory in /results and run a simulation directly
% from matlab framework. It is meant to run only small problems in linear
% for benchmark and debugging purpose since it makes matlab "busy"
%
SIMID
=
'lin_EPY'
;
% Name of the simulation
RUN
=
1
;
% To run or just to load
addpath
(
genpath
(
'../matlab'
))
% ... add
default_plots_options
PROGDIR
=
'/home/ahoffman/gyacomo/'
;
% EXECNAME = 'gyacomo_1.0';
EXECNAME
=
'gyacomo'
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set Up parameters
CLUSTER
.
TIME
=
'99:00:00'
;
% allocation time hh:mm:ss
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% PHYSICAL PARAMETERS
NU
=
0.1
;
% Collision frequency
TAU
=
1.0
;
% e/i temperature ratio
K_Ne
=
2.2
;
% ele Density '''
K_Te
=
K_Ne
/
4
;
% ele Temperature '''
K_Ni
=
K_Ne
;
% ion Density gradient drive
K_Ti
=
K_Ni
/
4
;
% ion Temperature '''
SIGMA_E
=
0.0233380
;
% mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
KIN_E
=
1
;
% 1: kinetic electrons, 2: adiabatic electrons
BETA
=
0.0
;
% electron plasma beta
%% GRID PARAMETERS
P
=
4
;
J
=
P
/
2
;
PMAXE
=
P
;
% Hermite basis size of electrons
JMAXE
=
J
;
% Laguerre "
PMAXI
=
P
;
% " ions
JMAXI
=
J
;
% "
NX
=
2
;
% real space x-gridpoints
NY
=
100
;
% '' y-gridpoints
LX
=
2
*
pi
/
0.8
;
% Size of the squared frequency domain
LY
=
120
;
%2*pi/0.05; % Size of the squared frequency domain
NZ
=
1
;
% number of perpendicular planes (parallel grid)
NPOL
=
1
;
SG
=
0
;
% Staggered z grids option
%% GEOMETRY
GEOMETRY
=
'Z-pinch'
;
% Z-pinch overwrites q0, shear and eps
Q0
=
1.4
;
% safety factor
SHEAR
=
0.8
;
% magnetic shear
NEXC
=
1
;
% To extend Lx if needed (Lx = Nexc/(kymin*shear))
EPS
=
0.18
;
% inverse aspect ratio
%% TIME PARMETERS
TMAX
=
50
;
% Maximal time unit
DT
=
1e-2
;
% Time step
SPS0D
=
1
;
% Sampling per time unit for 2D arrays
SPS2D
=
0
;
% Sampling per time unit for 2D arrays
SPS3D
=
2
;
% Sampling per time unit for 2D arrays
SPS5D
=
1
/
5
;
% Sampling per time unit for 5D arrays
SPSCP
=
0
;
% Sampling per time unit for checkpoints
JOB2LOAD
=
-
1
;
%% OPTIONS
LINEARITY
=
'linear'
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
% Collision operator
% (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
CO
=
'DG'
;
GKCO
=
1
;
% gyrokinetic operator
ABCO
=
1
;
% interspecies collisions
INIT_ZF
=
0
;
ZF_AMP
=
0.0
;
CLOS
=
0
;
% Closure model (0: =0 truncation, 1: v^Nmax closure (p+2j<=Pmax))s
NL_CLOS
=
0
;
% nonlinear closure model (-2:nmax=jmax; -1:nmax=jmax-j; >=0:nmax=NL_CLOS)
KERN
=
0
;
% Kernel model (0 : GK)
INIT_OPT
=
'mom00'
;
% Start simulation with a noisy mom00/phi/allmom
%% OUTPUTS
W_DOUBLE
=
1
;
W_GAMMA
=
1
;
W_HF
=
1
;
W_PHI
=
1
;
W_NA00
=
1
;
W_DENS
=
1
;
W_TEMP
=
1
;
W_NAPJ
=
1
;
W_SAPJ
=
0
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% unused
HD_CO
=
0.0
;
% Hyper diffusivity cutoff ratio
MU
=
0.0
;
% Hyperdiffusivity coefficient
INIT_BLOB
=
0
;
WIPE_TURB
=
0
;
ACT_ON_MODES
=
0
;
MU_X
=
MU
;
%
MU_Y
=
MU
;
%
N_HD
=
4
;
MU_Z
=
2.0
;
%
MU_P
=
0.0
;
%
MU_J
=
0.0
;
%
LAMBDAD
=
0.0
;
NOISE0
=
0.0e-5
;
% Init noise amplitude
BCKGD0
=
1.0
;
% Init background
GRADB
=
1.0
;
CURVB
=
1.0
;
%%-------------------------------------------------------------------------
%% RUN
setup
% system(['rm fort*.90']);
% Run linear simulation
if
RUN
system
([
'cd ../results/'
,
SIMID
,
'/'
,
PARAMS
,
'/; mpirun -np 6 '
,
PROGDIR
,
'bin/'
,
EXECNAME
,
' 1 6 1 0; cd ../../../wk'
])
end
%% Load results
%%
filename
=
[
SIMID
,
'/'
,
PARAMS
,
'/'
];
LOCALDIR
=
[
PROGDIR
,
'results/'
,
filename
,
'/'
];
% Load outputs from jobnummin up to jobnummax
JOBNUMMIN
=
00
;
JOBNUMMAX
=
00
;
data
=
compile_results
(
LOCALDIR
,
JOBNUMMIN
,
JOBNUMMAX
);
%Compile the results from first output found to JOBNUMMAX if existing
%% Short analysis
if
1
%% linear growth rate (adapted for 2D zpinch and fluxtube)
trange
=
[
0.5
1
]
*
data
.
Ts3D
(
end
);
nplots
=
1
;
% 1 for only growth rate and error, 2 for omega local evolution, 3 for plot according to z
lg
=
compute_fluxtube_growth_rate
(
data
,
trange
,
nplots
);
[
gmax
,
kmax
]
=
max
(
lg
.
g_ky
(:,
end
));
[
gmaxok
,
kmaxok
]
=
max
(
lg
.
g_ky
(:,
end
)
.
/
lg
.
ky
);
msg
=
sprintf
(
'gmax = %2.2f, kmax = %2.2f'
,
gmax
,
lg
.
ky
(
kmax
));
disp
(
msg
);
msg
=
sprintf
(
'gmax/k = %2.2f, kmax/k = %2.2f'
,
gmaxok
,
lg
.
ky
(
kmaxok
));
disp
(
msg
);
end
if
0
%% Ballooning plot
options
.
time_2_plot
=
[
120
];
options
.
kymodes
=
[
0.9
];
options
.
normalized
=
1
;
% options.field = 'phi';
fig
=
plot_ballooning
(
data
,
options
);
end
if
0
%% Hermite-Laguerre spectrum
% options.TIME = 'avg';
options
.
P2J
=
1
;
options
.
ST
=
1
;
options
.
PLOT_TYPE
=
'space-time'
;
% options.PLOT_TYPE = 'Tavg-1D';
% options.PLOT_TYPE = 'Tavg-2D';
options
.
NORMALIZED
=
0
;
options
.
JOBNUM
=
0
;
options
.
TIME
=
[
0
50
];
options
.
specie
=
'i'
;
options
.
compz
=
'avg'
;
fig
=
show_moments_spectrum
(
data
,
options
);
% fig = show_napjz(data,options);
save_figure
(
data
,
fig
)
end
if
0
%% linear growth rate for 3D Zpinch (kz fourier transform)
trange
=
[
0.5
1
]
*
data
.
Ts3D
(
end
);
options
.
keq0
=
1
;
% chose to plot planes at k=0 or max
options
.
kxky
=
1
;
options
.
kzkx
=
0
;
options
.
kzky
=
0
;
[
lg
,
fig
]
=
compute_3D_zpinch_growth_rate
(
data
,
trange
,
options
);
save_figure
(
data
,
fig
)
end
if
0
%% Mode evolution
options
.
NORMALIZED
=
0
;
options
.
K2PLOT
=
1
;
options
.
TIME
=
[
0
:
1000
];
options
.
NMA
=
1
;
options
.
NMODES
=
1
;
options
.
iz
=
'avg'
;
fig
=
mode_growth_meter
(
data
,
options
);
save_figure
(
data
,
fig
,
'.png'
)
end
if
0
%% RH TEST
ikx
=
2
;
iky
=
2
;
t0
=
0
;
t1
=
data
.
Ts3D
(
end
);
[
~
,
it0
]
=
min
(
abs
(
t0
-
data
.
Ts3D
));[
~
,
it1
]
=
min
(
abs
(
t1
-
data
.
Ts3D
));
plt
=
@
(
x
)
squeeze
(
mean
(
real
(
x
(
iky
,
ikx
,:,
it0
:
it1
)),
3
))
.
/
squeeze
(
mean
(
real
(
x
(
iky
,
ikx
,:,
it0
)),
3
));
figure
plot
(
data
.
Ts3D
(
it0
:
it1
),
plt
(
data
.
PHI
));
xlabel
(
'$t$'
);
ylabel
(
'$\phi_z(t)/\phi_z(0)$'
)
title
(
sprintf
(
'$k_x=$%2.2f, $k_y=$%2.2f'
,
data
.
kx
(
ikx
),
data
.
ky
(
iky
)))
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment