Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
79f69ff8
Commit
79f69ff8
authored
1 year ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
fixed the test
parent
e76a04a1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/DLRA_mod.F90
+187
-42
187 additions, 42 deletions
src/DLRA_mod.F90
with
187 additions
and
42 deletions
src/DLRA_mod.F90
+
187
−
42
View file @
79f69ff8
...
...
@@ -17,42 +17,56 @@ module DLRA
! CALL SVD(array_ky_pj,singular_values)
END
SUBROUTINE
SUBROUTINE
test_SVD
SUBROUTINE
test_svd
#ifdef TEST_SVD
! Program to perform Singular Value Decomposition (SVD)
! using LAPACK library
! Specify the dimensions of the input matrix A
INTEGER
,
PARAMETER
::
m
=
3
,
n
=
2
INTEGER
,
PARAMETER
::
lda
=
m
! Declare the input matrix A
REAL
,
DIMENSION
(
lda
,
n
)
::
A
! Specify the dimensions of the output matrices
INTEGER
,
PARAMETER
::
ldu
=
m
,
ldvt
=
n
INTEGER
,
PARAMETER
::
lwork
=
5
*
n
REAL
,
DIMENSION
(
ldu
,
m
)
::
U
REAL
,
DIMENSION
(
n
)
::
S
REAL
,
DIMENSION
(
ldvt
,
n
)
::
VT
REAL
,
DIMENSION
(
lwork
)
::
work
INTEGER
::
info
,
i
,
j
COMPLEX
,
DIMENSION
(
m
,
n
)
::
A
! OUTPUT
COMPLEX
,
DIMENSION
(
m
,
m
)
::
U
REAL
,
DIMENSION
(
MIN
(
m
,
n
))
::
S
COMPLEX
,
DIMENSION
(
n
,
n
)
::
VT
! local variables
INTEGER
::
lda
,
ldu
,
ldvt
,
info
,
lwork
,
i
,
j
COMPLEX
,
DIMENSION
(:),
ALLOCATABLE
::
work
REAL
,
DIMENSION
(:),
ALLOCATABLE
::
rwork
! Set the leading dimensions for the input and output arrays
lda
=
MAX
(
1
,
m
)
ldu
=
MAX
(
1
,
m
)
ldvt
=
MAX
(
1
,
n
)
! Define the input matrix A
A
=
RESHAPE
((/
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
/),
SHAPE
(
A
))
A
=
RESHAPE
((/
(
1.0
,
0.1
),
(
2.0
,
0.2
),
(
3.0
,
0.3
)
,
(
4.0
,
0.4
),
(
5.0
,
0.5
),
(
6.0
,
0.6
)
/),
SHAPE
(
A
))
! Print the input matrix A
WRITE
(
*
,
*
)
'Input matrix A = '
DO
i
=
1
,
m
WRITE
(
*
,
'(2X, 3F8.3)'
)
(
A
(
i
,
j
),
j
=
1
,
n
)
WRITE
(
*
,
*
)
(
'('
,
REAL
(
A
(
i
,
j
)),
AIMAG
(
A
(
i
,
j
)
),
')'
,
j
=
1
,
n
)
END
DO
! Compute the SVD of A using the LAPACK subroutine SGESVD
CALL
SGESVD
(
'A'
,
'A'
,
m
,
n
,
A
,
lda
,
S
,
U
,
ldu
,
VT
,
ldvt
,
work
,
lwork
,
info
)
ALLOCATE
(
work
(
5
*
n
),
rwork
(
5
*
n
))
! Compute the optimal workspace size
lwork
=
-1
CALL
CGESVD
(
'A'
,
'A'
,
m
,
n
,
A
,
lda
,
S
,
U
,
ldu
,
VT
,
ldvt
,
work
,
lwork
,
rwork
,
info
)
! Allocate memory for the workspace arrays
lwork
=
CEILING
(
REAL
(
work
(
1
)),
KIND
=
SELECTED_REAL_KIND
(
1
,
6
))
! Compute the SVD of A using the LAPACK subroutine CGESVD
CALL
CGESVD
(
'A'
,
'A'
,
m
,
n
,
A
,
lda
,
S
,
U
,
ldu
,
VT
,
ldvt
,
work
,
lwork
,
rwork
,
info
)
! Print the results
WRITE
(
*
,
*
)
'U = '
DO
i
=
1
,
m
WRITE
(
*
,
'(6F8.3)'
)
(
U
(
i
,
j
),
j
=
1
,
m
)
WRITE
(
*
,
*
)
(
'('
,
REAL
(
U
(
i
,
j
)),
AIMAG
(
U
(
i
,
j
)
),
')'
,
j
=
1
,
m
)
END
DO
WRITE
(
*
,
*
)
WRITE
(
*
,
*
)
'S = '
...
...
@@ -60,35 +74,166 @@ module DLRA
WRITE
(
*
,
*
)
WRITE
(
*
,
*
)
'VT = '
DO
i
=
1
,
n
WRITE
(
*
,
'(6F8.3)'
)
(
VT
(
i
,
j
),
j
=
1
,
n
)
WRITE
(
*
,
*
)
(
'('
,
REAL
(
VT
(
i
,
j
)),
AIMAG
(
VT
(
i
,
j
)
),
')'
,
j
=
1
,
n
)
END
DO
! Reconstruct A from its SVD
A
=
MATMUL
(
U
,
MATMUL
(
diagmat
(
S
,
m
,
n
),
TRANSPOSE
(
VT
)))
A
=
MATMUL
(
U
,
MATMUL
(
diagmat
(
S
,
m
,
n
),
VT
))
! Print the reconstructed matrix A
WRITE
(
*
,
*
)
'Reconstructed matrix A = '
DO
i
=
1
,
m
WRITE
(
*
,
'(2X, 3F8.3)'
)
(
A
(
i
,
j
),
j
=
1
,
n
)
WRITE
(
*
,
*
)
(
'('
,
REAL
(
A
(
i
,
j
)),
AIMAG
(
A
(
i
,
j
)
),
')'
,
j
=
1
,
n
)
END
DO
print
*
,
"this was a test of the SVD using LAPACK. End run."
stop
END
SUBROUTINE
test_SVD
FUNCTION
diagmat
(
v
,
m
,
n
)
RESULT
(
A
)
REAL
,
DIMENSION
(:),
INTENT
(
IN
)
::
v
INTEGER
,
INTENT
(
IN
)
::
m
,
n
REAL
,
DIMENSION
(
m
,
n
)
::
A
INTEGER
::
i
,
j
A
=
0.0
! Initialize A to a zero matrix
#endif
END
SUBROUTINE
test_svd
DO
i
=
1
,
MIN
(
m
,
n
)
A
(
i
,
i
)
=
v
(
i
)
! Set the diagonal elements of A to the values in v
END
DO
! SUBROUTINE test_svd
! ! Program to perform Singular Value Decomposition (SVD)
! ! using LAPACK library
! ! Specify the dimensions of the input matrix A
! INTEGER, PARAMETER :: m = 3, n = 2
! INTEGER, PARAMETER :: lda = m
! ! Declare the input matrix A
! REAL, DIMENSION(lda,n) :: A
! ! Specify the dimensions of the output matrices
! INTEGER, PARAMETER :: ldu = m, ldvt = n
! INTEGER, PARAMETER :: lwork = 5*n
! REAL, DIMENSION(ldu,m) :: U
! REAL, DIMENSION(n) :: S
! REAL, DIMENSION(ldvt,n) :: VT
! REAL, DIMENSION(lwork) :: work
! INTEGER :: info,i,j
! ! Define the input matrix A
! A = RESHAPE((/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), SHAPE(A))
! ! Compute the SVD of A using the LAPACK subroutine SGESVD
! CALL SGESVD('A', 'A', m, n, A, lda, S, U, ldu, VT, ldvt, work, lwork, info)
! ! Print the results
! WRITE(*,*) 'U = '
! DO i = 1, m
! WRITE(*,'(6F8.3)') (U(i,j), j=1,m)
! END DO
! WRITE(*,*)
! WRITE(*,*) 'S = '
! WRITE(*,'(2F8.3)') (S(i), i=1,n)
! WRITE(*,*)
! WRITE(*,*) 'VT = '
! DO i = 1, n
! WRITE(*,'(6F8.3)') (VT(i,j), j=1,n)
! END DO
! ! Reconstruct A from its SVD
! A = MATMUL(U, MATMUL(diagmat(S,m,n), TRANSPOSE(VT)))
! ! Print the reconstructed matrix A
! WRITE(*,*) 'Reconstructed matrix A = '
! DO i = 1, m
! WRITE(*,'(2X, 3F8.3)') (A(i,j), j=1,n)
! END DO
! stop
! END SUBROUTINE test_svd
! SUBROUTINE test_svd
! IMPLICIT NONE
! INTEGER, PARAMETER :: m = 3, n = 2
! COMPLEX(xp), DIMENSION(m, n) :: A
! COMPLEX(xp), DIMENSION(m, m) :: U
! COMPLEX(xp), DIMENSION(n, n) :: VT
! REAL(xp), DIMENSION(MIN(m,n)) :: S
! INTEGER :: i, j
! ! Initialize A
! A = RESHAPE((/ (1.0_xp, 2.0_xp), (3.0_xp, 4.0_xp), (5.0_xp, 6.0_xp),&
! (1.5_xp, 2.5_xp), (3.5_xp, 4.5_xp), (5.5_xp, 6.5_xp) /), [m, n])
! ! Print input
! WRITE(*,*) "A = "
! DO i = 1, m
! WRITE(*,"(3F8.3)") (REAL(A(i,j)), AIMAG(A(i,j)), j=1,n)
! END DO
! WRITE(*,*)
! ! Call the SVD subroutine
! CALL svd(A, U, S, VT, m, n)
! ! Print the resultas
! WRITE(*,*) "U = "
! DO i = 1, m
! WRITE(*,"(3F8.3)") (REAL(U(i,j)), AIMAG(U(i,j)), j=1,m)
! END DO
! WRITE(*,*)
! WRITE(*,*) "S = ", S
! WRITE(*,*)
! WRITE(*,*) "VT = "
! DO i = 1, n
! WRITE(*,"(3F8.3)") (REAL(VT(i,j)), AIMAG(VT(i,j)), j=1,n)
! END DO
! END SUBROUTINE test_svd
SUBROUTINE
svd
(
A
,
U
,
S
,
VT
,
m
,
n
)
IMPLICIT
NONE
! INPUT
COMPLEX
(
xp
),
DIMENSION
(
m
,
n
),
INTENT
(
IN
)
::
A
INTEGER
,
INTENT
(
IN
)
::
m
,
n
! OUTPUT
COMPLEX
(
xp
),
DIMENSION
(
m
,
m
),
INTENT
(
OUT
)
::
U
REAL
(
xp
),
DIMENSION
(
MIN
(
m
,
n
)),
INTENT
(
OUT
)
::
S
COMPLEX
(
xp
),
DIMENSION
(
n
,
n
),
INTENT
(
OUT
)
::
VT
! local variables
INTEGER
::
lda
,
ldu
,
ldvt
,
info
,
lwork
COMPLEX
(
xp
),
DIMENSION
(:),
ALLOCATABLE
::
work
REAL
(
xp
),
DIMENSION
(:),
ALLOCATABLE
::
rwork
#ifdef LAPACKDIR
! Set the leading dimensions for the input and output arrays
lda
=
MAX
(
1
,
m
)
ldu
=
MAX
(
1
,
m
)
ldvt
=
MAX
(
1
,
n
)
! Compute the optimal workspace size
lwork
=
-1
CALL
ZGESVD
(
'A'
,
'A'
,
m
,
n
,
A
,
lda
,
S
,
U
,
ldu
,
VT
,
ldvt
,
work
,
lwork
,
rwork
,
info
)
! Allocate memory for the workspace arrays
lwork
=
CEILING
(
REAL
(
work
(
1
)),
KIND
=
SELECTED_REAL_KIND
(
1
,
6
))
ALLOCATE
(
work
(
lwork
),
rwork
(
5
*
MIN
(
m
,
n
)))
! Compute the SVD
CALL
ZGESVD
(
'A'
,
'A'
,
m
,
n
,
A
,
lda
,
S
,
U
,
ldu
,
VT
,
ldvt
,
work
,
lwork
,
rwork
,
info
)
! Free the workspace arrays
DEALLOCATE
(
work
,
rwork
)
#endif
END
SUBROUTINE
svd
END
FUNCTION
diagmat
FUNCTION
diagmat
(
S
,
m
,
n
)
RESULT
(
D
)
IMPLICIT
NONE
! INPUT
REAL
,
DIMENSION
(:),
INTENT
(
IN
)
::
S
INTEGER
,
INTENT
(
IN
)
::
m
,
n
! OUTPUT
COMPLEX
,
DIMENSION
(
m
,
n
)
::
D
! Local variables
INTEGER
::
i
,
j
! Initialize the output array to zero
D
=
0.0
! Fill the diagonal elements of the output array with the input vector S
DO
i
=
1
,
MIN
(
m
,
n
)
D
(
i
,
i
)
=
S
(
i
)
END
DO
END
FUNCTION
diagmat
end
module
DLRA
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment