Skip to content
Snippets Groups Projects
Commit a8e24f8e authored by Antoine Cyril David Hoffmann's avatar Antoine Cyril David Hoffmann
Browse files

update results

parent 84c20694
No related branches found
No related tags found
No related merge requests found
......@@ -4,10 +4,10 @@ addpath(genpath('../matlab')) % ... add
%% Set Up parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CLUSTER PARAMETERS
CLUSTER.TIME = '12:00:00'; % allocation time hh:mm:ss
CLUSTER.TIME = '01:30:00'; % allocation time hh:mm:ss
CLUSTER.NODES = '1'; % MPI process
CLUSTER.CPUPT = '1'; % CPU per task
CLUSTER.NTPN = '20'; % N tasks per node
CLUSTER.NTPN = '4'; % N tasks per node
CLUSTER.PART = 'prod'; % dbg or prod
CLUSTER.MEM = '16GB'; % Memory
%% PHYSICAL PARAMETERS
......@@ -21,15 +21,15 @@ NOISE0 = 1.0e-5;
%% GRID PARAMETERS
N = 1024; % Frequency gridpoints (Nkr = N/2)
L = 100; % Size of the squared frequency domain
PMAXE = 1; % Highest electron Hermite polynomial degree
PMAXE = 2; % Highest electron Hermite polynomial degree
JMAXE = 1; % Highest '' Laguerre ''
PMAXI = 1; % Highest ion Hermite polynomial degree
PMAXI = 2; % Highest ion Hermite polynomial degree
JMAXI = 1; % Highest '' Laguerre ''
%% TIME PARAMETERS
TMAX = 5; % Maximal time unit
TMAX = 10; % Maximal time unit
DT = 5e-2; % Time step
SPS0D = 1/DT; % Sampling per time unit for profiler
SPS2D = 0; % Sampling per time unit for 2D arrays
SPS2D = 1; % Sampling per time unit for 2D arrays
SPS5D = 0; % Sampling per time unit for 5D arrays
RESTART = 0; % To restart from last checkpoint
JOB2LOAD= 0;
......
......@@ -2,21 +2,23 @@ default_plots_options
%% Strong scaling measurement
% Handwritten results for 512x256, P,J=2,1, Tmax = 5
% Handwritten results for 512x256, P,J=2,1, Tmax = 10, mu=0, dt = 5e-2
Results_512_21.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
Results_512_21.time = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000];
% Results_512_21.time = [0162, 0108, 0055, 0032, 0030, 0045, 0061, 0084]; %tmax 10
Results_512_21.time = [0799, 0436, 0207, 0116, 0135, 0200, 0237, 0246];
% Handwritten results for 512x256, P,J=3,2, Tmax = 2, mu=0, dt 1e-2?
% Handwritten results for 512x256, P,J=3,2, Tmax = 5, mu=0, dt 5e-2
Results_512_32.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
Results_512_32.time = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000];
Results_512_32.time = [1221, 0608, 0307, 0163, 0130, 0127, 0194, 0260];
% Handwritten results for 1024x512, P,J=1,1, Tmax = 5 dt = 0.05, mu = 0
Results_1024_11.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
Results_1024_11.time = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000];
% Handwritten results for 1024x512, P,J=2,1, Tmax = 5 dt = 0.05, mu = 0
Results_1024_21.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
% Results_1024_21.time = [1920, 0000, 0563, 0306, 0247, 0240, 0000, 0000];
Results_1024_21.time = [3808, 0000, 1108, 0586, 0465, 0443, 0483, 0496];
% Handwritten results for 1024x512, P,J=2,2, Tmax = 2 dt = 0.05, mu = 0
Results_1024_22.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
Results_1024_22.time = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000];
% Handwritten results for 1024x512, P,J=3,2, Tmax = 2 dt = 0.05, mu = 0
Results_1024_32.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
Results_1024_32.time = [0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000];
% Handwritten results for 1024x512, P,J=6,4, Tmax = 2 dt = 0.05, mu = 0
Results_1024_64.np = [ 1, 2, 4, 8, 12, 16, 20, 24];
......@@ -33,10 +35,10 @@ res = Results_512_21;
plot(res.np,res.time(1)./(res.time),'v-','DisplayName','$512\times256$, $P,J=2,1$');
res = Results_512_32;
plot(res.np,res.time(1)./(res.time),'>-','DisplayName','$512\times256$, $P,J=3,2$');
res = Results_1024_11;
plot(res.np,res.time(1)./(res.time),'o-','DisplayName','$1024\times512$, $P,J=1,1$');
res = Results_1024_22;
plot(res.np,res.time(1)./(res.time),'s-','DisplayName','$1024\times512$, $P,J=2,2$');xlim([1,max(res.np)]);
res = Results_1024_21;
plot(res.np,res.time(1)./(res.time),'o-','DisplayName','$1024\times512$, $P,J=2,1$');
res = Results_1024_32;
plot(res.np,res.time(1)./(res.time),'s-','DisplayName','$1024\times512$, $P,J=3,2$');xlim([1,max(res.np)]);
res = Results_1024_64;
plot(res.np,res.time(1)./(res.time),'d-','DisplayName','$1024\times512$, $P,J=6,4$');xlim([1,max(res.np)]);
xlabel('$N_p$'); ylabel('speedup')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment