Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
GitLab is being updated to the latest version (v17.9.2). No downtime is expected.
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
b2d0cb4a
Commit
b2d0cb4a
authored
3 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
rm unused code
parent
18fb426e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/collision_mod.F90
+0
-127
0 additions, 127 deletions
src/collision_mod.F90
with
0 additions
and
127 deletions
src/collision_mod.F90
+
0
−
127
View file @
b2d0cb4a
...
...
@@ -17,133 +17,6 @@ PUBLIC :: apply_COSOlver_mat_e, apply_COSOlver_mat_i
CONTAINS
! !******************************************************************************!
! !! Doughtery gyrokinetic collision operator for electrons
! !******************************************************************************!
! SUBROUTINE DoughertyGK(ip_,ij_,ikr_,ikz_,TColl_,specie_)
! IMPLICIT NONE
! INTEGER, INTENT(IN) :: ip_,ij_,ikr_,ikz_
! CHARACTER(len = 1), INTENT(IN) :: specie_
! COMPLEX(dp), INTENT(INOUT) :: TColl_
!
! COMPLEX(dp) :: n_,upar_,uperp_,Tpar_, Tperp_
! COMPLEX(dp) :: Dpj, Ppj, T_
! COMPLEX(dp) :: nadiab_moment_0j
! COMPLEX(dp), DIMENSION(:,:), ALLOCATABLE :: moments_
! REAL(dp), DIMENSION(:), ALLOCATABLE :: kernel_
! REAL(dp) :: Knp0, Knp1, Knm1
! INTEGER :: in_, jmax_
! REAL(dp) :: n_dp, j_dp, p_dp, b_, bo2_2_, q_tau_, nu_
!
! !** Auxiliary variables **
! !! If electrons !!
! IF ( specie_ .EQ. 'e' ) THEN
! p_dp = REAL(parray_e(ip_),dp)
! j_dp = REAL(jarray_e(ij_),dp)
! jmax_ = jmaxe
! bo2_2_ = (krarray(ikr_)**2 + kzarray(ikz_)**2) * sigmae2_taue_o2 ! this is (be/2)^2
! b_ = 2_dp*SQRT(bo2_2_) ! this is be
! q_tau_ = q_e/tau_e
! nu_ = nu_ee
! CALL allocate_array(moments_, ips_e,ipe_e, ijs_e,ije_e)
! moments_(ips_e:ipe_e,ijs_e:ije_e) = moments_e(ips_e:ipe_e,ijs_e:ije_e,ikr_,ikz_,updatetlevel)
! CALL allocate_array(kernel_, ijs_e,ije_e)
! kernel_(ijsg_e:ijeg_e) = kernel_e(ijsg_e:ijeg_e,ikr_,ikz_)
! !! If ions !!
! ELSEIF ( specie_ .EQ. 'i') THEN
! p_dp = REAL(parray_i(ip_),dp)
! j_dp = REAL(jarray_i(ij_),dp)
! jmax_ = jmaxi
! bo2_2_ = (krarray(ikr_)**2 + kzarray(ikz_)**2) * sigmai2_taui_o2 ! this is (bi/2)^2
! b_ = 2_dp*SQRT(bo2_2_) ! this is be
! q_tau_ = q_i/tau_i
! nu_ = nu_i
! CALL allocate_array(moments_, ips_i,ipe_i, ijs_i,ije_i)
! moments_(ips_i:ipe_i,ijs_i:ije_i) = moments_i(ips_i:ipe_i,ijs_i:ije_i,ikr_,ikz_,updatetlevel)
! CALL allocate_array(kernel_, ijsg_i,ijeg_i)
! kernel_(ijsg_i:ijeg_i) = kernel_i(ijsg_i:ijeg_i,ikr_,ikz_)
! ENDIF
!
! !** Assembling collison operator **
! ! Velocity-space diffusion (similar to Lenhard Bernstein)
! ! -nuee (p + 2j + b^2/2) Nepj
! TColl_ = -(p_dp + 2._dp*j_dp + 2._dp*bo2_2_)*moments_(ip_,ij_)
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! IF( p_dp .EQ. 0 ) THEN ! Kronecker p0
! ! Get adiabatic moment
! TColl_ = TColl_ - (p_dp + 2._dp*j_dp + 2._dp*bo2_2_) * q_tau_ * kernel_(ij_)*phi(ikr_,ikz_)
! !** build required fluid moments **
! n_ = 0._dp
! upar_ = 0._dp; uperp_ = 0._dp
! Tpar_ = 0._dp; Tperp_ = 0._dp
! DO in_ = 1,jmaxe+1
! n_dp = REAL(in_-1,dp)
! ! Store the kernels for sparing readings
! Knp0 = kernel_(in_)
! Knp1 = kernel_(in_+1)
! Knm1 = kernel_(in_-1)
! ! Nonadiabatic moments (only different from moments when p=0)
! nadiab_moment_0j = moments_(1,in_) + q_tau_ * Knp0 *phi(ikr_,ikz_)
! ! Density
! n_ = n_ + Knp0 * nadiab_moment_0j
! ! Perpendicular velocity
! uperp_ = uperp_ + b_*0.5_dp*(Knp0 - Knm1) * nadiab_moment_0j
! ! Parallel temperature
! Tpar_ = Tpar_ + Knp0 * (SQRT2*moments_(3,in_) + nadiab_moment_0j)
! ! Perpendicular temperature
! Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1._dp)*Knp1 - n_dp*Knm1)*nadiab_moment_0j
! ENDDO
! T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_
! ! Add energy restoring term
! TColl_ = TColl_ + T_* 4._dp * j_dp * kernel_(ij_)
! TColl_ = TColl_ - T_* 2._dp * (j_dp + 1._dp) * kernel_(ij_+1)
! TColl_ = TColl_ - T_* 2._dp * j_dp * kernel_(ij_-1)
! TColl_ = TColl_ + uperp_*b_* (kernel_(ij_) - kernel_(ij_-1))
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ELSEIF( p_dp .eq. 1 ) THEN ! kronecker p1
! !** build required fluid moments **
! upar_ = 0._dp
! DO in_ = 1,jmax_+1
! ! Parallel velocity
! upar_ = upar_ + Kernel_(in_) * moments_(2,in_)
! ENDDO
! TColl_ = TColl_ + upar_*Kernel_(ij_)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Non zero term for p = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ELSEIF( p_dp .eq. 2 ) THEN ! kronecker p2
! !** build required fluid moments **
! n_ = 0._dp
! upar_ = 0._dp; uperp_ = 0._dp
! Tpar_ = 0._dp; Tperp_ = 0._dp
! DO in_ = 1,jmaxe+1
! n_dp = REAL(in_-1,dp)
! ! Store the kernels for sparing readings
! Knp0 = kernel_(in_)
! Knp1 = kernel_(in_+1)
! Knm1 = kernel_(in_-1)
! ! Nonadiabatic moments (only different from moments when p=0)
! nadiab_moment_0j = moments_(1,in_) + q_tau_*Knp0*phi(ikr_,ikz_)
! ! Density
! n_ = n_ + Knp0 * nadiab_moment_0j
! ! Parallel temperature
! Tpar_ = Tpar_ + Knp0 * (SQRT2*moments_(3,in_) + nadiab_moment_0j)
! ! Perpendicular temperature
! Tperp_ = Tperp_ + ((2._dp*n_dp+1._dp)*Knp0 - (n_dp+1) * Knp1 - n_dp * Knm1)*nadiab_moment_0j
! ENDDO
! T_ = (Tpar_ + 2._dp*Tperp_)/3._dp - n_
! TColl_ = TColl_ + T_*SQRT2*kernel_(ij_)
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
! ENDIF
! ! Multiply by specieslike collision coefficient
! TColl_ = nu_ * TColl_
!
! END SUBROUTINE DoughertyGK
!******************************************************************************!
!! Doughtery gyrokinetic collision operator for electrons
!******************************************************************************!
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment