Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
e828928c
Commit
e828928c
authored
2 years ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
script for linear scan
parent
9ab19c11
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/CBC_kT_scan_salpha.m
+263
-0
263 additions, 0 deletions
wk/CBC_kT_scan_salpha.m
with
263 additions
and
0 deletions
wk/CBC_kT_scan_salpha.m
0 → 100644
+
263
−
0
View file @
e828928c
gyacomodir
=
pwd
;
gyacomodir
=
gyacomodir
(
1
:
end
-
2
);
addpath
(
genpath
([
gyacomodir
,
'matlab'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/plot'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/compute'
]))
% ... add
addpath
(
genpath
([
gyacomodir
,
'matlab/load'
]))
% ... add% EXECNAME = 'gyacomo_1.0';
% EXECNAME = 'gyacomo_debug';
EXECNAME
=
'gyacomo'
;
CLUSTER
.
TIME
=
'99:00:00'
;
% allocation time hh:mm:ss
%%
SIMID
=
'p2_CBC_convergence_KT_PJ'
;
% Name of the simulation
% SIMID = 'dbg'; % Name of the simulation
RERUN
=
0
;
% rerun if the data does not exist
RUN
=
0
;
KT_a
=
[
3
:
0.5
:
7
];
% KT_a = [3];
% P_a = [22];
P_a
=
[
2
:
2
:
30
];
% P_a = [2:12];
J_a
=
floor
(
P_a
/
2
);
% collision setting
CO
=
'DG'
;
NU
=
0.05
;
GKCO
=
0
;
% gyrokinetic operator
COLL_KCUT
=
1.75
;
% model
KIN_E
=
0
;
% 1: kinetic electrons, 2: adiabatic electrons
BETA
=
1e-4
;
% electron plasma beta
% background gradients setting
K_N
=
2.22
;
% Density '''
% Geometry
% GEOMETRY= 'miller';
GEOMETRY
=
's-alpha'
;
SHEAR
=
0.8
;
% magnetic shear
% time and numerical grid
DT
=
1e-3
;
TMAX
=
25
;
kymin
=
0.3
;
NY
=
2
;
% arrays for the result
g_ky
=
zeros
(
numel
(
KT_a
),
numel
(
P_a
),
NY
/
2
+
1
);
g_avg
=
g_ky
*
0
;
g_std
=
g_ky
*
0
;
j
=
1
;
for
P
=
P_a
i
=
1
;
for
KT
=
KT_a
%% PHYSICAL PARAMETERS
TAU
=
1.0
;
% e/i temperature ratio
% SIGMA_E = 0.05196152422706632; % mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
SIGMA_E
=
0.0233380
;
% mass ratio sqrt(m_a/m_i) (correct = 0.0233380)
K_Te
=
KT
;
% ele Temperature '''
K_Ti
=
KT
;
% ion Temperature '''
K_Ne
=
K_N
;
% ele Density '''
K_Ni
=
K_N
;
% ion Density gradient drive
%% GRID PARAMETERS
% P = 20;
J
=
floor
(
P
/
2
);
PMAXE
=
P
;
% Hermite basis size of electrons
JMAXE
=
J
;
% Laguerre "
PMAXI
=
P
;
% " ions
JMAXI
=
J
;
% "
NX
=
12
;
% real space x-gridpoints
LX
=
2
*
pi
/
0.8
;
% Size of the squared frequency domain
LY
=
2
*
pi
/
kymin
;
% Size of the squared frequency domain
NZ
=
24
;
% number of perpendicular planes (parallel grid)
NPOL
=
1
;
SG
=
0
;
% Staggered z grids option
NEXC
=
1
;
% To extend Lx if needed (Lx = Nexc/(kymin*shear))
%% GEOMETRY
% GEOMETRY= 's-alpha';
EPS
=
0.18
;
% inverse aspect ratio
Q0
=
1.4
;
% safety factor
KAPPA
=
1.0
;
% elongation
DELTA
=
0.0
;
% triangularity
ZETA
=
0.0
;
% squareness
PARALLEL_BC
=
'dirichlet'
;
%'dirichlet','periodic','shearless','disconnected'
% PARALLEL_BC = 'periodic'; %'dirichlet','periodic','shearless','disconnected'
SHIFT_Y
=
0.0
;
%% TIME PARMETERS
SPS0D
=
1
;
% Sampling per time unit for 2D arrays
SPS2D
=
-
1
;
% Sampling per time unit for 2D arrays
SPS3D
=
1
;
% Sampling per time unit for 2D arrays
SPS5D
=
1
/
2
;
% Sampling per time unit for 5D arrays
SPSCP
=
0
;
% Sampling per time unit for checkpoints
JOB2LOAD
=
-
1
;
%% OPTIONS
LINEARITY
=
'linear'
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
% Collision operator
ABCO
=
1
;
% interspecies collisions
INIT_ZF
=
0
;
ZF_AMP
=
0.0
;
CLOS
=
0
;
% Closure model (0: =0 truncation, 1: v^Nmax closure (p+2j<=Pmax))s
NL_CLOS
=
0
;
% nonlinear closure model (-2:nmax=jmax; -1:nmax=jmax-j; >=0:nmax=NL_CLOS)
KERN
=
0
;
% Kernel model (0 : GK)
INIT_OPT
=
'phi'
;
% Start simulation with a noisy mom00/phi/allmom
NUMERICAL_SCHEME
=
'RK4'
;
% RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5
%% OUTPUTS
W_DOUBLE
=
1
;
W_GAMMA
=
1
;
W_HF
=
1
;
W_PHI
=
1
;
W_NA00
=
1
;
W_DENS
=
1
;
W_TEMP
=
1
;
W_NAPJ
=
1
;
W_SAPJ
=
0
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% unused
HD_CO
=
0.0
;
% Hyper diffusivity cutoff ratio
MU
=
0.0
;
% Hyperdiffusivity coefficient
INIT_BLOB
=
0
;
WIPE_TURB
=
0
;
ACT_ON_MODES
=
0
;
MU_X
=
MU
;
%
MU_Y
=
MU
;
%
N_HD
=
4
;
MU_Z
=
0.2
;
%
MU_P
=
0.0
;
%
MU_J
=
0.0
;
%
LAMBDAD
=
0.0
;
NOISE0
=
1.0e-5
;
% Init noise amplitude
BCKGD0
=
0.0
;
% Init background
GRADB
=
1.0
;
CURVB
=
1.0
;
%% RUN
setup
% naming
filename
=
[
SIMID
,
'/'
,
PARAMS
,
'/'
];
LOCALDIR
=
[
gyacomodir
,
'results/'
,
filename
,
'/'
];
% check if data exist to run if no data
data_
=
compile_results
(
LOCALDIR
,
0
,
0
);
%Compile the results from first output found to JOBNUMMAX if existing
if
RUN
&&
(
RERUN
||
isempty
(
data_
.
NU_EVOL
)
||
numel
(
data_
.
Ts3D
)
<
10
)
system
([
'cd ../results/'
,
SIMID
,
'/'
,
PARAMS
,
'/; mpirun -np 4 '
,
gyacomodir
,
'bin/'
,
EXECNAME
,
' 1 2 2 0; cd ../../../wk'
])
% system(['cd ../results/',SIMID,'/',PARAMS,'/; mpirun -np 6 ',gyacomodir,'bin/',EXECNAME,' 3 2 1 0; cd ../../../wk'])
end
% Load results after trying to run
filename
=
[
SIMID
,
'/'
,
PARAMS
,
'/'
];
LOCALDIR
=
[
gyacomodir
,
'results/'
,
filename
,
'/'
];
data_
=
compile_results
(
LOCALDIR
,
0
,
0
);
%Compile the results from first output found to JOBNUMMAX if existing
% linear growth rate (adapted for 2D zpinch and fluxtube)
options
.
TRANGE
=
[
0.5
1
]
*
data_
.
Ts3D
(
end
);
options
.
NPLOTS
=
0
;
% 1 for only growth rate and error, 2 for omega local evolution, 3 for plot according to z
options
.
GOK
=
0
;
%plot 0: gamma 1: gamma/k 2: gamma^2/k^3
[
~
,
it1
]
=
min
(
abs
(
data_
.
Ts3D
-
0.5
*
data_
.
Ts3D
(
end
)));
% start of the measurement time window
[
~
,
it2
]
=
min
(
abs
(
data_
.
Ts3D
-
1.0
*
data_
.
Ts3D
(
end
)));
% end of ...
field
=
0
;
field_t
=
0
;
for
ik
=
2
:
NY
/
2
+
1
field
=
squeeze
(
sum
(
abs
(
data_
.
PHI
),
3
));
% take the sum over z
field_t
=
squeeze
(
field
(
ik
,
1
,:));
% take the kx =0, ky = ky mode only
to_measure
=
log
(
field_t
(
it1
:
it2
));
tw
=
data_
.
Ts3D
(
it1
:
it2
);
% gr = polyfit(tw,to_measure,1);
gr
=
fit
(
tw
,
to_measure
,
'poly1'
);
err
=
confint
(
gr
);
g_ky
(
i
,
j
,
ik
)
=
gr
.
p1
;
g_std
(
i
,
j
,
ik
)
=
abs
(
err
(
2
,
1
)
-
err
(
1
,
1
))/
2
;
end
[
gmax
,
ikmax
]
=
max
(
g_ky
(
i
,
j
,:));
msg
=
sprintf
(
'gmax = %2.2f, kmax = %2.2f'
,
gmax
,
data_
.
ky
(
ikmax
));
disp
(
msg
);
i
=
i
+
1
;
end
j
=
j
+
1
;
end
if
0
%% Check time evolution
figure
;
plot
(
data_
.
Ts3D
,
to_measure
);
hold
on
plot
(
data_
.
Ts3D
(
it1
:
it2
),
to_measure
(
it1
:
it2
),
'--'
);
end
if
1
%% Study of the peak growth rate
figure
y_
=
g_ky
;
e_
=
0.05
;
% filter growth rate with less than 0.05 value
y_
=
y_
.*
(
y_
-
e_
>
0
);
e_
=
e_
.*
(
y_
>
0
);
[
y_
,
idx_
]
=
max
(
g_ky
,[],
3
);
for
i
=
1
:
numel
(
idx_
)
e_
=
g_std
(:,:,
idx_
(
i
));
end
colors_
=
jet
(
numel
(
KT_a
));
subplot
(
121
)
for
i
=
1
:
numel
(
KT_a
)
% errorbar(P_a,y_(i,:),e_(i,:),...
% 'LineWidth',1.2,...
% 'DisplayName',['$\nu=$',num2str(KT_a(i))],...
% 'color',colors_(i,:));
plot
(
P_a
,
y_
(
i
,:),
's-'
,
...
'LineWidth'
,
2.0
,
...
'DisplayName'
,[
'$\kappa_T=$'
,
num2str
(
KT_a
(
i
))],
...
'color'
,
colors_
(
i
,:));
hold
on
;
end
title
([
'$\nu_{'
,
CO
,
'}=$'
,
num2str
(
NU
),
', $\kappa_N=$'
,
num2str
(
K_N
),
', $k_y=$'
,
num2str
(
kymin
)]);
legend
(
'show'
);
xlabel
(
'$P$, $J=P/2$'
);
ylabel
(
'$\gamma$'
);
colors_
=
jet
(
numel
(
P_a
));
subplot
(
122
)
for
j
=
1
:
numel
(
P_a
)
% errorbar(KT_a,y_(:,j),e_(:,j),...
% 'LineWidth',1.2,...
% 'DisplayName',['(',num2str(P_a(j)),',',num2str(J_a(j)),')'],...
% 'color',colors_(j,:));
plot
(
KT_a
,
y_
(:,
j
),
's-'
,
...
'LineWidth'
,
2.0
,
...
'DisplayName'
,[
'('
,
num2str
(
P_a
(
j
)),
','
,
num2str
(
J_a
(
j
)),
')'
],
...
'color'
,
colors_
(
j
,:));
hold
on
;
end
title
([
'$\nu_{'
,
CO
,
'}=$'
,
num2str
(
NU
),
', $\kappa_N=$'
,
num2str
(
K_N
),
', $k_y=$'
,
num2str
(
kymin
)]);
legend
(
'show'
);
xlabel
(
'$\kappa_T$'
);
ylabel
(
'$\gamma$'
);
end
if
0
%% Pcolor of the peak
figure
;
[
XX_
,
YY_
]
=
meshgrid
(
KT_a
,
P_a
);
% pclr=pcolor(XX_,YY_,y_'); set(pclr,'EdgeColor','none'); axis ij;
pclr
=
imagesc_custom
(
XX_
,
YY_
,
y_
'.*(y_>0)'
);
title
([
'$\nu_{'
,
data
.
CO
,
'}=$'
,
num2str
(
data
.
NU
),
', $\kappa_N=$'
,
num2str
(
K_N
),
', $k_y=$'
,
num2str
(
kymin
)]);
xlabel
(
'$\kappa_T$'
);
ylabel
(
'$P$, $J=P/2$'
);
colormap
(
bluewhitered
)
clb
=
colorbar
;
clb
.
Label
.
String
=
'$\gamma c_s/R$'
;
clb
.
Label
.
Interpreter
=
'latex'
;
clb
.
Label
.
FontSize
=
18
;
end
%%
%% Save metadata
ktmin
=
num2str
(
min
(
KT_a
));
ktmax
=
num2str
(
max
(
KT_a
));
pmin
=
num2str
(
min
(
P_a
));
pmax
=
num2str
(
max
(
P_a
));
filename
=
[
num2str
(
NX
),
'x'
,
num2str
(
NZ
),
'_ky_'
,
num2str
(
kymin
),
...
'_kT_'
,
ktmin
,
'_'
,
ktmax
,
'_'
,
...
'_P_'
,
pmin
,
'_'
,
pmax
,
'_'
,
data_
.
CO
,
'_'
,
num2str
(
NU
),
'.mat'
];
metadata
.
name
=
filename
;
metadata
.
kymin
=
kymin
;
metadata
.
title
=
[
'$\nu_{'
,
data_
.
CO
,
'}=$'
,
num2str
(
NU
),
', $\kappa_N=$'
,
num2str
(
K_N
),
', $k_y=$'
,
num2str
(
kymin
)];
metadata
.
par
=
data_
.
PARAMS
;
metadata
.
nscan
=
2
;
metadata
.
s1name
=
'$\kappa_T$'
;
metadata
.
s1
=
KT_a
;
metadata
.
s2name
=
'$P$, $J=P/2$'
;
metadata
.
s2
=
P_a
;
metadata
.
dname
=
'$\gamma c_s/R$'
;
metadata
.
data
=
y_
;
metadata
.
err
=
e_
;
metadata
.
input_file
=
h5read
([
data_
.
localdir
,
'/outputs_00.h5'
],
'/files/STDIN.00'
);
metadata
.
date
=
date
;
% tosave.data = metadata;
save
([
SIMDIR
,
filename
],
'-struct'
,
'metadata'
);
disp
([
'saved in '
,
SIMDIR
,
filename
]);
clear
metadata
tosave
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment