-
Utkarsh Upadhyay authored
1. Fixed a variable naming bug in orderedsets.Main, used id.uniqueName instead of id.name 2. Added a dumbInsert example in BinarySearchTree.scala (which bypasses the ifExpr problem, in function insert) 3. Added formula relaxation in ExprToASTConverter, in orderedsets
Utkarsh Upadhyay authored1. Fixed a variable naming bug in orderedsets.Main, used id.uniqueName instead of id.name 2. Added a dumbInsert example in BinarySearchTree.scala (which bypasses the ifExpr problem, in function insert) 3. Added formula relaxation in ExprToASTConverter, in orderedsets
SetOperations.scala 1.90 KiB
import scala.collection.immutable.Set
// Cardinalities not supported yet.
// Pre/Post conditions commented out.
object SetOperations {
/* Sets of type Set[Int] */
def wrongAdd(a : Set[Int], b: Int) : Set[Int] = {
a ++ Set(b)
} ensuring (_ == a)
// Pure BAPA verification condition
def vennRegions(a: Set[Int], b: Set[Int], c: Set[Int]) = {
a ++ b ++ c
} ensuring {
_.size ==
a.size + b.size + c.size -
(a ** b).size - (b ** c).size - (c ** a).size +
(a ** b ** c).size
}
// Ordered BAPA verification condition
def add(a: Set[Int], b: Int): Set[Int] = {
require(a.size >= 0)
a ++ Set(b)
} ensuring ((x: Set[Int]) => x.size >= a.size)
/* Sets of type Set[Set[Int]] */
// This still works ..
def vennRegions2(a: Set[Set[Int]], b: Set[Set[Int]], c: Set[Set[Int]]) = {
a ++ b ++ c
} ensuring {
_.size ==
a.size + b.size + c.size -
(a ** b).size - (b ** c).size - (c ** a).size +
(a ** b ** c).size
}
// OrderedBAPA verification with Min and Max
def expandSet(a: Set[Int]) : Set[Int] = {
require(a.size >= 1)
val x = a.min - 1
val y = a.max + 1
Set(x) ++ Set(y) ++ a
} ensuring (res => res.max > a.max && res.min < a.min)
// .. but this can no longer be proved by the OrderedBAPA solver,
// because "Set(b)" is neither a set of uninterpreted elements (pure BAPA)
// nor it is a set of integers (ordered BAPA).
//
// Perhaps "Set(b)" can be approximated by a fresh set variable S,
// with |S| = 1 ? More general, we can approximate "FiniteSet(elems)"
// by a fresh set variable S with |S| <= [# of elems].
// (Though, there is a problem with min/max expressions appearing recursively
// in the FiniteSet.)
def add2(a: Set[Set[Int]], b: Set[Int]): Set[Set[Int]] = {
require(a.size >= 0)
a ++ Set(b)
} ensuring ((x: Set[Set[Int]]) => x.size >= a.size)
}