-
Regis Blanc authored
note that I had to remove the precondition of negate checking that the type is Boolean. Some nested sub-expressions are untyped.
Regis Blanc authorednote that I had to remove the precondition of negate checking that the type is Boolean. Some nested sub-expressions are untyped.
Constructors.scala 14.45 KiB
/* Copyright 2009-2015 EPFL, Lausanne */
package leon
package purescala
import Expressions._
import Extractors._
import ExprOps._
import Definitions._
import TypeOps._
import Common._
import Types._
/** Provides constructors for [[purescala.Expressions]].
*
* The constructors implement some logic to simplify the tree and
* potentially use a different expression node if one is more suited.
* @define encodingof Encoding of
* */
object Constructors {
/** If `isTuple`, the whole expression is returned. This is to avoid a situation like
* `tupleSelect(tupleWrap(Seq(Tuple(x,y))),1) -> x`, which is not expected.
* Instead,
* `tupleSelect(tupleWrap(Seq(Tuple(x,y))),1) -> Tuple(x,y)`.
* @see [[purescala.Expressions.TupleSelect]]
*/
def tupleSelect(t: Expr, index: Int, isTuple: Boolean): Expr = t match {
case Tuple(es) if isTuple => es(index-1)
case _ if t.getType.isInstanceOf[TupleType] && isTuple =>
TupleSelect(t, index)
case other if !isTuple => other
case _ =>
sys.error(s"Calling tupleSelect on non-tuple $t")
}
/** Simplifies the construct `TupleSelect(expr, index, originalSize > 1)`
* @param originalSize The arity of the tuple. If less or equal to 1, the whole expression is returned.
* @see [[purescala.Expressions.TupleSelect]]
*/
def tupleSelect(t: Expr, index: Int, originalSize: Int): Expr = tupleSelect(t, index, originalSize > 1)
/** $encodingof ``val id = e; bd`, and returns `bd` if the identifier is not bound in `bd`.
* @see [[purescala.Expressions.Let]]
*/
def let(id: Identifier, e: Expr, bd: Expr) = {
if (variablesOf(bd) contains id)
Let(id, e, bd)
else bd
}
/** $encodingof ``val (id1, id2, ...) = e; bd`, and returns `bd` if the identifiers are not bound in `bd`.
* @see [[purescala.Expressions.Let]]
*/
def letTuple(binders: Seq[Identifier], value: Expr, body: Expr) = binders match {
case Nil =>
body
case x :: Nil =>
Let(x, value, body)
case xs =>
require(
value.getType.isInstanceOf[TupleType],
s"The definition value in LetTuple must be of some tuple type; yet we got [${value.getType}]. In expr: \n$this"
)
Extractors.LetPattern(TuplePattern(None,binders map { b => WildcardPattern(Some(b)) }), value, body)
}
/** Wraps the sequence of expressions as a tuple. If the sequence contains a single expression, it is returned instead.
* @see [[purescala.Expressions.Tuple]]
*/
def tupleWrap(es: Seq[Expr]): Expr = es match {
case Seq() => UnitLiteral()
case Seq(elem) => elem
case more => Tuple(more)
}
/** Wraps the sequence of patterns as a tuple. If the sequence contains a single pattern, it is returned instead.
* If the sequence is empty, [[purescala.Expressions.LiteralPattern `LiteralPattern`]]`(None, `[[purescala.Expressions.UnitLiteral `UnitLiteral`]]`())` is returned.
* @see [[purescala.Expressions.TuplePattern]]
* @see [[purescala.Expressions.LiteralPattern]]
*/
def tuplePatternWrap(ps: Seq[Pattern]) = ps match {
case Seq() => LiteralPattern(None, UnitLiteral())
case Seq(elem) => elem
case more => TuplePattern(None, more)
}
/** Wraps the sequence of types as a tuple. If the sequence contains a single type, it is returned instead.
* If the sequence is empty, the [[purescala.Types.UnitType UnitType]] is returned.
* @see [[purescala.Types.TupleType]]
*/
def tupleTypeWrap(tps : Seq[TypeTree]) = tps match {
case Seq() => UnitType
case Seq(elem) => elem
case more => TupleType(more)
}
/** Instantiates the type parameters of the function according to argument types
* @return A [[purescala.Expressions.FunctionInvocation FunctionInvocation]] if it type checks, else throws an error.
* @see [[purescala.Expressions.FunctionInvocation]]
*/
def functionInvocation(fd : FunDef, args : Seq[Expr]) = {
require(fd.params.length == args.length, "Invoking function with incorrect number of arguments")
val formalType = tupleTypeWrap(fd.params map { _.getType })
val actualType = tupleTypeWrap(args map { _.getType })
canBeSubtypeOf(actualType, typeParamsOf(formalType).toSeq, formalType) match {
case Some(tmap) =>
FunctionInvocation(fd.typed(fd.tparams map { tpd => tmap.getOrElse(tpd.tp, tpd.tp) }), args)
case None => sys.error(s"$actualType cannot be a subtype of $formalType!")
}
}
/** Simplifies the provided case class selector.
* @see [[purescala.Expressions.CaseClassSelector]]
*/
def caseClassSelector(classType: CaseClassType, caseClass: Expr, selector: Identifier): Expr = {
caseClass match {
case CaseClass(ct, fields) if ct.classDef == classType.classDef =>
fields(ct.classDef.selectorID2Index(selector))
case _ =>
CaseClassSelector(classType, caseClass, selector)
}
}
/** $encoding of `case ... if ... => ... ` but simplified if possible, based on types of the encompassing [[purescala.Expressions.CaseClassPattern MatchExpr]].
* @see [[purescala.Expressions.CaseClassPattern MatchExpr]]
* @see [[purescala.Expressions.CaseClassPattern CaseClassPattern]]
*/
private def filterCases(scrutType : TypeTree, resType: Option[TypeTree], cases: Seq[MatchCase]): Seq[MatchCase] = {
val casesFiltered = scrutType match {
case c: CaseClassType =>
cases.filter(_.pattern match {
case CaseClassPattern(_, cct, _) if cct.classDef != c.classDef => false
case _ => true
})
case _: TupleType | Int32Type | IntegerType | BooleanType | UnitType | _: AbstractClassType =>
cases
case t =>
scala.sys.error("Constructing match expression on non-supported type: "+t)
}
resType match {
case Some(tpe) =>
casesFiltered.filter(c => isSubtypeOf(c.rhs.getType, tpe) || isSubtypeOf(tpe, c.rhs.getType))
case None =>
casesFiltered
}
}
/** $encodingof the I/O example specification, simplified to '''true''' if the cases are trivially true.
* @see [[purescala.Expressions.Passes Passes]]
*/
def passes(in : Expr, out : Expr, cases : Seq[MatchCase]): Expr = {
val resultingCases = filterCases(in.getType, Some(out.getType), cases)
if (resultingCases.nonEmpty) {
Passes(in, out, resultingCases)
} else {
BooleanLiteral(true)
}
}
/** $encodingof `... match { ... }` but simplified if possible. Throws an error if no case can match the scrutined expression.
* @see [[purescala.Expressions.MatchExpr MatchExpr]]
*/
def matchExpr(scrutinee : Expr, cases : Seq[MatchCase]) : Expr ={
val filtered = filterCases(scrutinee.getType, None, cases)
if (filtered.nonEmpty)
MatchExpr(scrutinee, filtered)
else
Error(
cases.headOption.map{ _.rhs.getType }.getOrElse(Untyped),
"No case matches the scrutinee"
)
}
/** $encodingof `&&`-expressions with arbitrary number of operands, and simplified.
* @see [[purescala.Expressions.And And]]
*/
def and(exprs: Expr*): Expr = {
val flat = exprs.flatMap {
case And(es) => es
case o => Seq(o)
}
var stop = false
val simpler = for(e <- flat if !stop && e != BooleanLiteral(true)) yield {
if(e == BooleanLiteral(false)) stop = true
e
}
simpler match {
case Seq() => BooleanLiteral(true)
case Seq(x) => x
case _ => And(simpler)
}
}
/** $encodingof `&&`-expressions with arbitrary number of operands as a sequence, and simplified.
* @see [[purescala.Expressions.And And]]
*/
def andJoin(es: Seq[Expr]) = and(es :_*)
/** $encodingof `||`-expressions with arbitrary number of operands, and simplified.
* @see [[purescala.Expressions.Or Or]]
*/
def or(exprs: Expr*): Expr = {
val flat = exprs.flatMap {
case Or(es) => es
case o => Seq(o)
}
var stop = false
val simpler = for(e <- flat if !stop && e != BooleanLiteral(false)) yield {
if(e == BooleanLiteral(true)) stop = true
e
}
simpler match {
case Seq() => BooleanLiteral(false)
case Seq(x) => x
case _ => Or(simpler)
}
}
/** $encodingof `||`-expressions with arbitrary number of operands as a sequence, and simplified.
* @see [[purescala.Expressions.Or Or]]
*/
def orJoin(es: Seq[Expr]) = or(es :_*)
/** $encodingof simplified `!`-expressions .
* @see [[purescala.Expressions.Not Not]]
*/
def not(e: Expr): Expr = negate(e)
/** $encodingof simplified `... ==> ...` (implication)
* @see [[purescala.Expressions.Implies Implies]]
*/
def implies(lhs: Expr, rhs: Expr): Expr = (lhs, rhs) match {
case (BooleanLiteral(false), _) => BooleanLiteral(true)
case (_, BooleanLiteral(true)) => BooleanLiteral(true)
case (BooleanLiteral(true), r) => r
case (l, BooleanLiteral(false)) => Not(l)
case (l1, Implies(l2, r2)) => implies(and(l1, l2), r2)
case _ => Implies(lhs, rhs)
}
/** $encodingof Simplified `Array(...)` (array length defined at compile-time)
* @see [[purescala.Expressions.NonemptyArray NonemptyArray]]
*/
def finiteArray(els: Seq[Expr]): Expr = {
require(els.nonEmpty)
finiteArray(els, None, Untyped) // Untyped is not correct, but will not be used anyway
}
/** $encodingof Simplified `Array[...](...)` (array length and default element defined at run-time) with type information
* @see [[purescala.Constructors#finiteArray(els:Map* finiteArray]]
*/
def finiteArray(els: Seq[Expr], defaultLength: Option[(Expr, Expr)], tpe: TypeTree): Expr = {
finiteArray(els.zipWithIndex.map{ _.swap }.toMap, defaultLength, tpe)
}
/** $encodingof Simplified `Array[...](...)` (array length and default element defined at run-time) with type information
* @see [[purescala.Expressions.EmptyArray EmptyArray]]
*/
def finiteArray(els: Map[Int, Expr], defaultLength: Option[(Expr, Expr)], tpe: TypeTree): Expr = {
if (els.isEmpty && defaultLength.isEmpty) EmptyArray(tpe)
else NonemptyArray(els, defaultLength)
}
/** $encodingof simplified `Array(...)` (array length and default element defined at run-time).
* @see [[purescala.Expressions.NonemptyArray NonemptyArray]]
*/
def nonemptyArray(els: Seq[Expr], defaultLength: Option[(Expr, Expr)]): Expr = {
NonemptyArray(els.zipWithIndex.map{ _.swap }.toMap, defaultLength)
}
/** Takes a mapping from keys to values and a default expression and return a lambda of the form
* {{{
* (x1, ..., xn) =>
* if ( key1 == (x1, ..., xn) ) value1
* else if ( key2 == (x1, ..., xn) ) value2
* ...
* else default
* }}}
*/
def finiteLambda(default: Expr, els: Seq[(Expr, Expr)], inputTypes: Seq[TypeTree]): Lambda = {
val args = inputTypes map { tpe => ValDef(FreshIdentifier("x", tpe, true)) }
val argsExpr = tupleWrap(args map { _.toVariable })
val body = els.foldRight(default) { case ((key, value), default) =>
IfExpr(Equals(argsExpr, key), value, default)
}
Lambda(args, body)
}
/** $encodingof simplified `... == ...` (equality).
* @see [[purescala.Expressions.Equals Equals]]
*/
def equality(a: Expr, b: Expr) = {
if (a == b && isDeterministic(a)) {
BooleanLiteral(true)
} else {
Equals(a, b)
}
}
/** $encodingof simplified `fn(realArgs)` (function application).
* @see [[purescala.Expressions.Lambda Lambda]]
* @see [[purescala.Expressions.Application Application]]
*/
def application(fn: Expr, realArgs: Seq[Expr]) = fn match {
case Lambda(formalArgs, body) =>
assert(realArgs.size == formalArgs.size, "Invoking lambda with incorrect number of arguments")
var defs: Seq[(Identifier, Expr)] = Seq()
val subst = formalArgs.zip(realArgs).map {
case (ValDef(from, _), to:Variable) =>
from -> to
case (ValDef(from, _), e) =>
val fresh = from.freshen
defs :+= (fresh -> e)
from -> Variable(fresh)
}.toMap
val (ids, bds) = defs.unzip
letTuple(ids, tupleWrap(bds), replaceFromIDs(subst, body))
case _ =>
Application(fn, realArgs)
}
/** $encodingof simplified `... + ...` (plus).
* @see [[purescala.Expressions.Plus Plus]]
* @see [[purescala.Expressions.BVPlus BVPlus]]
* @see [[purescala.Expressions.RealPlus RealPlus]]
*/
def plus(lhs: Expr, rhs: Expr): Expr = (lhs, rhs) match {
case (InfiniteIntegerLiteral(bi), _) if bi == 0 => rhs
case (_, InfiniteIntegerLiteral(bi)) if bi == 0 => lhs
case (IntLiteral(0), _) => rhs
case (_, IntLiteral(0)) => lhs
case (RealLiteral(d), _) if d == 0 => rhs
case (_, RealLiteral(d)) if d == 0 => lhs
case (IsTyped(_, IntegerType), IsTyped(_, IntegerType)) => Plus(lhs, rhs)
case (IsTyped(_, Int32Type), IsTyped(_, Int32Type)) => BVPlus(lhs, rhs)
case (IsTyped(_, RealType), IsTyped(_, RealType)) => RealPlus(lhs, rhs)
}
/** $encodingof simplified `... - ...` (minus).
* @see [[purescala.Expressions.Minus Minus]]
* @see [[purescala.Expressions.BVMinus BVMinus]]
* @see [[purescala.Expressions.RealMinus RealMinus]]
*/
def minus(lhs: Expr, rhs: Expr): Expr = (lhs, rhs) match {
case (_, InfiniteIntegerLiteral(bi)) if bi == 0 => lhs
case (_, IntLiteral(0)) => lhs
case (InfiniteIntegerLiteral(bi), _) if bi == 0 => UMinus(rhs)
case (IntLiteral(0), _) => BVUMinus(rhs)
case (IsTyped(_, IntegerType), IsTyped(_, IntegerType)) => Minus(lhs, rhs)
case (IsTyped(_, Int32Type), IsTyped(_, Int32Type)) => BVMinus(lhs, rhs)
case (IsTyped(_, RealType), IsTyped(_, RealType)) => RealMinus(lhs, rhs)
}
/** $encodingof simplified `... * ...` (times).
* @see [[purescala.Expressions.Times Times]]
* @see [[purescala.Expressions.BVTimes BVTimes]]
* @see [[purescala.Expressions.RealTimes RealTimes]]
*/
def times(lhs: Expr, rhs: Expr): Expr = (lhs, rhs) match {
case (InfiniteIntegerLiteral(bi), _) if bi == 1 => rhs
case (_, InfiniteIntegerLiteral(bi)) if bi == 1 => lhs
case (InfiniteIntegerLiteral(bi), _) if bi == 0 => InfiniteIntegerLiteral(0)
case (_, InfiniteIntegerLiteral(bi)) if bi == 0 => InfiniteIntegerLiteral(0)
case (IntLiteral(1), _) => rhs
case (_, IntLiteral(1)) => lhs
case (IntLiteral(0), _) => IntLiteral(0)
case (_, IntLiteral(0)) => IntLiteral(0)
case (IsTyped(_, IntegerType), IsTyped(_, IntegerType)) => Times(lhs, rhs)
case (IsTyped(_, Int32Type), IsTyped(_, Int32Type)) => BVTimes(lhs, rhs)
case (IsTyped(_, RealType), IsTyped(_, RealType)) => RealTimes(lhs, rhs)
}
}