-
Emmanouil (Manos) Koukoutos authoredEmmanouil (Manos) Koukoutos authored
Constructors.scala 5.24 KiB
/* Copyright 2009-2014 EPFL, Lausanne */
package leon
package purescala
import utils._
object Constructors {
import Trees._
import TypeTreeOps._
import Common._
import TypeTrees._
import Definitions.FunDef
def tupleSelect(t: Expr, index: Int) = t match {
case Tuple(es) =>
es(index-1)
case _ =>
TupleSelect(t, index)
}
def letTuple(binders: Seq[Identifier], value: Expr, body: Expr) = binders match {
case Nil =>
body
case x :: Nil =>
if (isSubtypeOf(value.getType, x.getType) || !value.getType.isInstanceOf[TupleType]) {
// This is for cases where we build it like: letTuple(List(x), tupleWrap(List(z)))
Let(x, value, body)
} else {
Let(x, tupleSelect(value, 1), body)
}
case xs =>
require(
value.getType.isInstanceOf[TupleType],
s"The definition value in LetTuple must be of some tuple type; yet we got [${value.getType}]. In expr: \n$this"
)
Extractors.LetPattern(TuplePattern(None,binders map { b => WildcardPattern(Some(b)) }), value, body)
}
def tupleChoose(ch: Choose): Expr = {
if (ch.vars.size > 1) {
ch
} else {
Tuple(Seq(ch))
}
}
def tupleWrap(es: Seq[Expr]): Expr = es match {
case Seq() => UnitLiteral()
case Seq(elem) => elem
case more => Tuple(more)
}
def tuplePatternWrap(ps: Seq[Pattern]) = ps match {
case Seq() => LiteralPattern(None, UnitLiteral())
case Seq(elem) => elem
case more => TuplePattern(None, more)
}
def tupleTypeWrap(tps : Seq[TypeTree]) = tps match {
case Seq() => UnitType
case Seq(elem) => elem
case more => TupleType(more)
}
/** Will instantiate the type parameters of the function according to argument types */
def functionInvocation(fd : FunDef, args : Seq[Expr]) = {
require(fd.params.length == args.length)
val formalType = tupleTypeWrap(fd.params map { _.getType })
val actualType = tupleTypeWrap(args map { _.getType })
canBeSubtypeOf(actualType, typeParamsOf(formalType).toSeq, formalType) match {
case Some(tmap) =>
FunctionInvocation(fd.typed(fd.tparams map { tpd => tmap.getOrElse(tpd.tp, tpd.tp) }), args)
case None => sys.error(s"$actualType cannot be a subtype of $formalType!")
}
}
private def filterCases(scrutType : TypeTree, resType: Option[TypeTree], cases: Seq[MatchCase]): Seq[MatchCase] = {
val casesFiltered = scrutType match {
case c: CaseClassType =>
cases.filter(_.pattern match {
case CaseClassPattern(_, cct, _) if cct.classDef != c.classDef => false
case _ => true
})
case _: TupleType | Int32Type | BooleanType | UnitType | _: AbstractClassType =>
cases
case t =>
scala.sys.error("Constructing match expression on non-supported type: "+t)
}
resType match {
case Some(tpe) =>
casesFiltered.filter(c => isSubtypeOf(c.rhs.getType, tpe) || isSubtypeOf(tpe, c.rhs.getType))
case None =>
casesFiltered
}
}
def gives(scrutinee : Expr, cases : Seq[MatchCase]) : Gives =
Gives(scrutinee, filterCases(scrutinee.getType, None, cases))
def passes(in : Expr, out : Expr, cases : Seq[MatchCase]): Expr = {
val resultingCases = filterCases(in.getType, Some(out.getType), cases)
if (resultingCases.nonEmpty) {
Passes(in, out, resultingCases)
} else {
BooleanLiteral(true)
}
}
def matchExpr(scrutinee : Expr, cases : Seq[MatchCase]) : Expr ={
val filtered = filterCases(scrutinee.getType, None, cases)
if (filtered.nonEmpty)
MatchExpr(scrutinee, filtered)
else
Error(
cases match {
case Seq(hd, _*) => hd.rhs.getType
case Seq() => Untyped
},
"No case matches the scrutinee"
)
}
def and(exprs: Expr*): Expr = {
val flat = exprs.flatMap(_ match {
case And(es) => es
case o => Seq(o)
})
var stop = false
val simpler = for(e <- flat if !stop && e != BooleanLiteral(true)) yield {
if(e == BooleanLiteral(false)) stop = true
e
}
simpler match {
case Seq() => BooleanLiteral(true)
case Seq(x) => x
case _ => And(simpler)
}
}
def andJoin(es: Seq[Expr]) = and(es :_*)
def or(exprs: Expr*): Expr = {
val flat = exprs.flatMap(_ match {
case Or(es) => es
case o => Seq(o)
})
var stop = false
val simpler = for(e <- flat if !stop && e != BooleanLiteral(false)) yield {
if(e == BooleanLiteral(true)) stop = true
e
}
simpler match {
case Seq() => BooleanLiteral(false)
case Seq(x) => x
case _ => Or(simpler)
}
}
def orJoin(es: Seq[Expr]) = or(es :_*)
def not(e: Expr): Expr = e match {
case Not(e) => e
case BooleanLiteral(v) => BooleanLiteral(!v)
case _ => Not(e)
}
def implies(lhs: Expr, rhs: Expr): Expr = (lhs, rhs) match {
case (BooleanLiteral(false), _) => BooleanLiteral(true)
case (_, BooleanLiteral(true)) => BooleanLiteral(true)
case (BooleanLiteral(true), r) => r
case (l, BooleanLiteral(false)) => Not(l)
case (l1, Implies(l2, r2)) => implies(and(l1, l2), r2)
case _ => Implies(lhs, rhs)
}
}