-
Etienne Kneuss authoredEtienne Kneuss authored
TreeOps.scala 34.69 KiB
package leon
package purescala
object TreeOps {
import Common._
import TypeTrees._
import Definitions._
import Trees._
import Extractors._
def negate(expr: Expr) : Expr = expr match {
case Let(i,b,e) => Let(i,b,negate(e))
case Not(e) => e
case Iff(e1,e2) => Iff(negate(e1),e2)
case Implies(e1,e2) => And(e1, negate(e2))
case Or(exs) => And(exs map negate)
case And(exs) => Or(exs map negate)
case LessThan(e1,e2) => GreaterEquals(e1,e2)
case LessEquals(e1,e2) => GreaterThan(e1,e2)
case GreaterThan(e1,e2) => LessEquals(e1,e2)
case GreaterEquals(e1,e2) => LessThan(e1,e2)
case i @ IfExpr(c,e1,e2) => IfExpr(c, negate(e1), negate(e2)).setType(i.getType)
case BooleanLiteral(b) => BooleanLiteral(!b)
case _ => Not(expr)
}
// Warning ! This may loop forever if the substitutions are not
// well-formed!
def replace(substs: Map[Expr,Expr], expr: Expr) : Expr = {
searchAndReplaceDFS(substs.get)(expr)
}
// Can't just be overloading because of type erasure :'(
def replaceFromIDs(substs: Map[Identifier,Expr], expr: Expr) : Expr = {
replace(substs.map(p => (Variable(p._1) -> p._2)), expr)
}
def searchAndReplace(subst: Expr=>Option[Expr], recursive: Boolean=true)(expr: Expr) : Expr = {
def rec(ex: Expr, skip: Expr = null) : Expr = (if (ex == skip) None else subst(ex)) match {
case Some(newExpr) => {
if(newExpr.getType == Untyped) {
Settings.reporter.error("REPLACING IN EXPRESSION WITH AN UNTYPED TREE ! " + ex + " --to--> " + newExpr)
}
if(ex == newExpr)
if(recursive) rec(ex, ex) else ex
else
if(recursive) rec(newExpr) else newExpr
}
case None => ex match {
case l @ Let(i,e,b) => {
val re = rec(e)
val rb = rec(b)
if(re != e || rb != b)
Let(i, re, rb).setType(l.getType)
else
l
}
case l @ LetVar(i,e,b) => {
val re = rec(e)
val rb = rec(b)
if(re != e || rb != b)
LetVar(i, re, rb).setType(l.getType)
else
l
}
case l @ LetDef(fd, b) => {
//TODO, not sure, see comment for the next LetDef
fd.body = fd.body.map(rec(_))
fd.precondition = fd.precondition.map(rec(_))
fd.postcondition = fd.postcondition.map(rec(_))
LetDef(fd, rec(b)).setType(l.getType)
}
case lt @ LetTuple(ids, expr, body) => {
val re = rec(expr)
val rb = rec(body)
if (re != expr || rb != body) {
LetTuple(ids, re, rb).setType(lt.getType)
} else {
lt
}
}
case n @ NAryOperator(args, recons) => {
var change = false
val rargs = args.map(a => {
val ra = rec(a)
if(ra != a) {
change = true
ra
} else {
a
}
})
if(change)
recons(rargs).setType(n.getType)
else
n
}
case b @ BinaryOperator(t1,t2,recons) => {
val r1 = rec(t1)
val r2 = rec(t2)
if(r1 != t1 || r2 != t2)
recons(r1,r2).setType(b.getType)
else
b
}
case u @ UnaryOperator(t,recons) => {
val r = rec(t)
if(r != t)
recons(r).setType(u.getType)
else
u
}
case i @ IfExpr(t1,t2,t3) => {
val r1 = rec(t1)
val r2 = rec(t2)
val r3 = rec(t3)
if(r1 != t1 || r2 != t2 || r3 != t3)
IfExpr(rec(t1),rec(t2),rec(t3)).setType(i.getType)
else
i
}
case m @ MatchExpr(scrut,cses) => MatchExpr(rec(scrut), cses.map(inCase(_))).setType(m.getType).setPosInfo(m)
case c @ Choose(args, body) =>
val body2 = rec(body)
if (body != body2) {
Choose(args, body2).setType(c.getType)
} else {
c
}
case t if t.isInstanceOf[Terminal] => t
case unhandled => scala.sys.error("Non-terminal case should be handled in searchAndReplace: " + unhandled)
}
}
def inCase(cse: MatchCase) : MatchCase = cse match {
case SimpleCase(pat, rhs) => SimpleCase(pat, rec(rhs))
case GuardedCase(pat, guard, rhs) => GuardedCase(pat, rec(guard), rec(rhs))
}
rec(expr)
}
def searchAndReplaceDFS(subst: Expr=>Option[Expr])(expr: Expr) : Expr = {
val (res,_) = searchAndReplaceDFSandTrackChanges(subst)(expr)
res
}
def searchAndReplaceDFSandTrackChanges(subst: Expr=>Option[Expr])(expr: Expr) : (Expr,Boolean) = {
var somethingChanged: Boolean = false
def applySubst(ex: Expr) : Expr = subst(ex) match {
case None => ex
case Some(newEx) => {
somethingChanged = true
if(newEx.getType == Untyped) {
Settings.reporter.warning("REPLACING [" + ex + "] WITH AN UNTYPED EXPRESSION !")
Settings.reporter.warning("Here's the new expression: " + newEx)
}
newEx
}
}
def rec(ex: Expr) : Expr = ex match {
case l @ Let(i,e,b) => {
val re = rec(e)
val rb = rec(b)
applySubst(if(re != e || rb != b) {
Let(i,re,rb).setType(l.getType)
} else {
l
})
}
case l @ LetTuple(ids,e,b) => {
val re = rec(e)
val rb = rec(b)
applySubst(if(re != e || rb != b) {
LetTuple(ids,re,rb).setType(l.getType)
} else {
l
})
}
case l @ LetVar(i,e,b) => {
val re = rec(e)
val rb = rec(b)
applySubst(if(re != e || rb != b) {
LetVar(i,re,rb).setType(l.getType)
} else {
l
})
}
case l @ LetDef(fd,b) => {
//TODO: Not sure: I actually need the replace to occurs even in the pre/post condition, hope this is correct
fd.body = fd.body.map(rec(_))
fd.precondition = fd.precondition.map(rec(_))
fd.postcondition = fd.postcondition.map(rec(_))
val rl = LetDef(fd, rec(b)).setType(l.getType)
applySubst(rl)
}
case n @ NAryOperator(args, recons) => {
var change = false
val rargs = args.map(a => {
val ra = rec(a)
if(ra != a) {
change = true
ra
} else {
a
}
})
applySubst(if(change) {
recons(rargs).setType(n.getType)
} else {
n
})
}
case b @ BinaryOperator(t1,t2,recons) => {
val r1 = rec(t1)
val r2 = rec(t2)
applySubst(if(r1 != t1 || r2 != t2) {
recons(r1,r2).setType(b.getType)
} else {
b
})
}
case u @ UnaryOperator(t,recons) => {
val r = rec(t)
applySubst(if(r != t) {
recons(r).setType(u.getType)
} else {
u
})
}
case i @ IfExpr(t1,t2,t3) => {
val r1 = rec(t1)
val r2 = rec(t2)
val r3 = rec(t3)
applySubst(if(r1 != t1 || r2 != t2 || r3 != t3) {
IfExpr(r1,r2,r3).setType(i.getType)
} else {
i
})
}
case m @ MatchExpr(scrut,cses) => {
val rscrut = rec(scrut)
val (newCses,changes) = cses.map(inCase(_)).unzip
applySubst(if(rscrut != scrut || changes.exists(res=>res)) {
MatchExpr(rscrut, newCses).setType(m.getType).setPosInfo(m)
} else {
m
})
}
case c @ Choose(args, body) =>
val body2 = rec(body)
applySubst(if (body != body2) {
Choose(args, body2).setType(c.getType).setPosInfo(c)
} else {
c
})
case t if t.isInstanceOf[Terminal] => applySubst(t)
case unhandled => scala.sys.error("Non-terminal case should be handled in searchAndReplaceDFS: " + unhandled)
}
def inCase(cse: MatchCase) : (MatchCase,Boolean) = cse match {
case s @ SimpleCase(pat, rhs) => {
val rrhs = rec(rhs)
if(rrhs != rhs) {
(SimpleCase(pat, rrhs), true)
} else {
(s, false)
}
}
case g @ GuardedCase(pat, guard, rhs) => {
val rguard = rec(guard)
val rrhs = rec(rhs)
if(rguard != guard || rrhs != rhs) {
(GuardedCase(pat, rguard, rrhs), true)
} else {
(g, false)
}
}
}
val res = rec(expr)
(res, somethingChanged)
}
// rewrites pattern-matching expressions to use fresh variables for the binders
def freshenLocals(expr: Expr) : Expr = {
def rewritePattern(p: Pattern, sm: Map[Identifier,Identifier]) : Pattern = p match {
case InstanceOfPattern(Some(b), ctd) => InstanceOfPattern(Some(sm(b)), ctd)
case WildcardPattern(Some(b)) => WildcardPattern(Some(sm(b)))
case CaseClassPattern(ob, ccd, sps) => CaseClassPattern(ob.map(sm(_)), ccd, sps.map(rewritePattern(_, sm)))
case other => other
}
def freshenCase(cse: MatchCase) : MatchCase = {
val allBinders: Set[Identifier] = cse.pattern.binders
val subMap: Map[Identifier,Identifier] = Map(allBinders.map(i => (i, FreshIdentifier(i.name, true).setType(i.getType))).toSeq : _*)
val subVarMap: Map[Expr,Expr] = subMap.map(kv => (Variable(kv._1) -> Variable(kv._2)))
cse match {
case SimpleCase(pattern, rhs) => SimpleCase(rewritePattern(pattern, subMap), replace(subVarMap, rhs))
case GuardedCase(pattern, guard, rhs) => GuardedCase(rewritePattern(pattern, subMap), replace(subVarMap, guard), replace(subVarMap, rhs))
}
}
def applyToTree(e : Expr) : Option[Expr] = e match {
case m @ MatchExpr(s, cses) => Some(MatchExpr(s, cses.map(freshenCase(_))).setType(m.getType).setPosInfo(m))
case l @ Let(i,e,b) => {
val newID = FreshIdentifier(i.name, true).setType(i.getType)
Some(Let(newID, e, replace(Map(Variable(i) -> Variable(newID)), b)))
}
case _ => None
}
searchAndReplaceDFS(applyToTree)(expr)
}
// convert describes how to compute a value for the leaves (that includes
// functions with no args.)
// combine descriess how to combine two values
def treeCatamorphism[A](convert: Expr=>A, combine: (A,A)=>A, expression: Expr) : A = {
treeCatamorphism(convert, combine, (e:Expr,a:A)=>a, expression)
}
// compute allows the catamorphism to change the combined value depending on the tree
def treeCatamorphism[A](convert: Expr=>A, combine: (A,A)=>A, compute: (Expr,A)=>A, expression: Expr) : A = {
def rec(expr: Expr) : A = expr match {
case l @ Let(_, e, b) => compute(l, combine(rec(e), rec(b)))
case l @ LetVar(_, e, b) => compute(l, combine(rec(e), rec(b)))
case l @ LetDef(fd, b) => {//TODO, still not sure about the semantic
val exprs: Seq[Expr] = fd.precondition.toSeq ++ fd.body.toSeq ++ fd.postcondition.toSeq ++ Seq(b)
compute(l, exprs.map(rec(_)).reduceLeft(combine))
}
case n @ NAryOperator(args, _) => {
if(args.size == 0)
compute(n, convert(n))
else
compute(n, args.map(rec(_)).reduceLeft(combine))
}
case b @ BinaryOperator(a1,a2,_) => compute(b, combine(rec(a1),rec(a2)))
case u @ UnaryOperator(a,_) => compute(u, rec(a))
case i @ IfExpr(a1,a2,a3) => compute(i, combine(combine(rec(a1), rec(a2)), rec(a3)))
case m @ MatchExpr(scrut, cses) => compute(m, (scrut +: cses.flatMap(_.expressions)).map(rec(_)).reduceLeft(combine))
case a @ AnonymousFunction(es, ev) => compute(a, (es.flatMap(e => e._1 ++ Seq(e._2)) ++ Seq(ev)).map(rec(_)).reduceLeft(combine))
case c @ Choose(args, body) => compute(c, rec(body))
case t: Terminal => compute(t, convert(t))
case unhandled => scala.sys.error("Non-terminal case should be handled in treeCatamorphism: " + unhandled)
}
rec(expression)
}
def flattenBlocks(expr: Expr): Expr = {
def applyToTree(expr: Expr): Option[Expr] = expr match {
case Block(exprs, last) => {
val nexprs = (exprs :+ last).flatMap{
case Block(es2, el) => es2 :+ el
case UnitLiteral => Seq()
case e2 => Seq(e2)
}
val fexpr = nexprs match {
case Seq() => UnitLiteral
case Seq(e) => e
case es => Block(es.init, es.last).setType(es.last.getType)
}
Some(fexpr)
}
case _ => None
}
searchAndReplaceDFS(applyToTree)(expr)
}
//checking whether the expr is pure, that is do not contains any non-pure construct: assign, while, blocks, array, ...
//this is expected to be true when entering the "backend" of Leon
def isPure(expr: Expr): Boolean = {
def convert(t: Expr) : Boolean = t match {
case Block(_, _) => false
case Assignment(_, _) => false
case While(_, _) => false
case LetVar(_, _, _) => false
case LetDef(_, _) => false
case ArrayUpdate(_, _, _) => false
case ArrayMake(_) => false
case ArrayClone(_) => false
case Epsilon(_) => false
case _ => true
}
def combine(b1: Boolean, b2: Boolean) = b1 && b2
def compute(e: Expr, b: Boolean) = e match {
case Block(_, _) => false
case Assignment(_, _) => false
case While(_, _) => false
case LetVar(_, _, _) => false
case LetDef(_, _) => false
case ArrayUpdate(_, _, _) => false
case ArrayMake(_) => false
case ArrayClone(_) => false
case Epsilon(_) => false
case _ => b
}
treeCatamorphism(convert, combine, compute, expr)
}
def containsEpsilon(expr: Expr): Boolean = {
def convert(t : Expr) : Boolean = t match {
case (l : Epsilon) => true
case _ => false
}
def combine(c1 : Boolean, c2 : Boolean) : Boolean = c1 || c2
def compute(t : Expr, c : Boolean) = t match {
case (l : Epsilon) => true
case _ => c
}
treeCatamorphism(convert, combine, compute, expr)
}
def containsLetDef(expr: Expr): Boolean = {
def convert(t : Expr) : Boolean = t match {
case (l : LetDef) => true
case _ => false
}
def combine(c1 : Boolean, c2 : Boolean) : Boolean = c1 || c2
def compute(t : Expr, c : Boolean) = t match {
case (l : LetDef) => true
case _ => c
}
treeCatamorphism(convert, combine, compute, expr)
}
def containsIfExpr(expr: Expr): Boolean = {
def convert(t : Expr) : Boolean = t match {
case (i: IfExpr) => true
case _ => false
}
def combine(c1 : Boolean, c2 : Boolean) : Boolean = c1 || c2
def compute(t : Expr, c : Boolean) = t match {
case (i: IfExpr) => true
case _ => c
}
treeCatamorphism(convert, combine, compute, expr)
}
def variablesOf(expr: Expr) : Set[Identifier] = {
def convert(t: Expr) : Set[Identifier] = t match {
case Variable(i) => Set(i)
case _ => Set.empty
}
def combine(s1: Set[Identifier], s2: Set[Identifier]) = s1 ++ s2
def compute(t: Expr, s: Set[Identifier]) = t match {
case Let(i,_,_) => s -- Set(i)
case MatchExpr(_, cses) => s -- (cses.map(_.pattern.binders).foldLeft(Set[Identifier]())((a, b) => a ++ b))
case AnonymousFunctionInvocation(i,_) => s ++ Set[Identifier](i)
case _ => s
}
treeCatamorphism(convert, combine, compute, expr)
}
def containsFunctionCalls(expr : Expr) : Boolean = {
def convert(t : Expr) : Boolean = t match {
case f : FunctionInvocation => true
case _ => false
}
def combine(c1 : Boolean, c2 : Boolean) : Boolean = c1 || c2
def compute(t : Expr, c : Boolean) = t match {
case f : FunctionInvocation => true
case _ => c
}
treeCatamorphism(convert, combine, compute, expr)
}
def topLevelFunctionCallsOf(expr: Expr, barring : Set[FunDef] = Set.empty) : Set[FunctionInvocation] = {
def convert(t: Expr) : Set[FunctionInvocation] = t match {
case f @ FunctionInvocation(fd, _) if(!barring(fd)) => Set(f)
case _ => Set.empty
}
def combine(s1: Set[FunctionInvocation], s2: Set[FunctionInvocation]) = s1 ++ s2
def compute(t: Expr, s: Set[FunctionInvocation]) = t match {
case f @ FunctionInvocation(fd, _) if(!barring(fd)) => Set(f) // ++ s that's the difference with the one below
case _ => s
}
treeCatamorphism(convert, combine, compute, expr)
}
def allNonRecursiveFunctionCallsOf(expr: Expr, program: Program) : Set[FunctionInvocation] = {
def convert(t: Expr) : Set[FunctionInvocation] = t match {
case f @ FunctionInvocation(fd, _) if program.isRecursive(fd) => Set(f)
case _ => Set.empty
}
def combine(s1: Set[FunctionInvocation], s2: Set[FunctionInvocation]) = s1 ++ s2
def compute(t: Expr, s: Set[FunctionInvocation]) = t match {
case f @ FunctionInvocation(fd,_) if program.isRecursive(fd) => Set(f) ++ s
case _ => s
}
treeCatamorphism(convert, combine, compute, expr)
}
def functionCallsOf(expr: Expr) : Set[FunctionInvocation] = {
def convert(t: Expr) : Set[FunctionInvocation] = t match {
case f @ FunctionInvocation(_, _) => Set(f)
case _ => Set.empty
}
def combine(s1: Set[FunctionInvocation], s2: Set[FunctionInvocation]) = s1 ++ s2
def compute(t: Expr, s: Set[FunctionInvocation]) = t match {
case f @ FunctionInvocation(_, _) => Set(f) ++ s
case _ => s
}
treeCatamorphism(convert, combine, compute, expr)
}
def contains(expr: Expr, matcher: Expr=>Boolean) : Boolean = {
treeCatamorphism[Boolean](
matcher,
(b1: Boolean, b2: Boolean) => b1 || b2,
(t: Expr, b: Boolean) => b || matcher(t),
expr)
}
def allIdentifiers(expr: Expr) : Set[Identifier] = expr match {
case l @ Let(binder, e, b) => allIdentifiers(e) ++ allIdentifiers(b) + binder
case l @ LetVar(binder, e, b) => allIdentifiers(e) ++ allIdentifiers(b) + binder
case l @ LetDef(fd, b) => allIdentifiers(fd.getBody) ++ allIdentifiers(b) + fd.id
case n @ NAryOperator(args, _) =>
(args map (TreeOps.allIdentifiers(_))).foldLeft(Set[Identifier]())((a, b) => a ++ b)
case b @ BinaryOperator(a1,a2,_) => allIdentifiers(a1) ++ allIdentifiers(a2)
case u @ UnaryOperator(a,_) => allIdentifiers(a)
case i @ IfExpr(a1,a2,a3) => allIdentifiers(a1) ++ allIdentifiers(a2) ++ allIdentifiers(a3)
case m @ MatchExpr(scrut, cses) =>
(cses map (_.allIdentifiers)).foldLeft(Set[Identifier]())((a, b) => a ++ b) ++ allIdentifiers(scrut)
case Variable(id) => Set(id)
case t: Terminal => Set.empty
}
def allDeBruijnIndices(expr: Expr) : Set[DeBruijnIndex] = {
def convert(t: Expr) : Set[DeBruijnIndex] = t match {
case i @ DeBruijnIndex(idx) => Set(i)
case _ => Set.empty
}
def combine(s1: Set[DeBruijnIndex], s2: Set[DeBruijnIndex]) = s1 ++ s2
treeCatamorphism(convert, combine, expr)
}
/* Simplifies let expressions:
* - removes lets when expression never occurs
* - simplifies when expressions occurs exactly once
* - expands when expression is just a variable.
* Note that the code is simple but far from optimal (many traversals...)
*/
def simplifyLets(expr: Expr) : Expr = {
def simplerLet(t: Expr) : Option[Expr] = t match {
case letExpr @ Let(i, t: Terminal, b) => Some(replace(Map((Variable(i) -> t)), b))
case letExpr @ Let(i,e,b) => {
val occurences = treeCatamorphism[Int]((e:Expr) => e match {
case Variable(x) if x == i => 1
case _ => 0
}, (x:Int,y:Int)=>x+y, b)
if(occurences == 0) {
Some(b)
} else if(occurences == 1) {
Some(replace(Map((Variable(i) -> e)), b))
} else {
None
}
}
//case letTuple @ LetTuple(ids, expr, body) if ids.size == 1 =>
// simplerLet(Let(ids.head, TupleSelect(expr, 1).setType(ids.head.getType), body))
case letTuple @ LetTuple(ids, Tuple(exprs), body) =>
var newBody = body
val (remIds, remExprs) = (ids zip exprs).filter {
case (id, value: Terminal) =>
newBody = replace(Map((Variable(id) -> value)), newBody)
//we replace, so we drop old
false
case (id, value) =>
val occurences = treeCatamorphism[Int]((e:Expr) => e match {
case Variable(x) if x == id => 1
case _ => 0
}, (x:Int,y:Int)=>x+y, body)
if(occurences == 0) {
false
} else if(occurences == 1) {
newBody = replace(Map((Variable(id) -> value)), newBody)
false
} else {
true
}
}.unzip
if (remIds.isEmpty) {
Some(newBody)
} else if (remIds.tail.isEmpty) {
Some(Let(remIds.head, remExprs.head, newBody))
} else {
Some(LetTuple(remIds, Tuple(remExprs), newBody))
}
case _ => None
}
searchAndReplaceDFS(simplerLet)(expr)
}
// Pulls out all let constructs to the top level, and makes sure they're
// properly ordered.
private type DefPair = (Identifier,Expr)
private type DefPairs = List[DefPair]
private def allLetDefinitions(expr: Expr) : DefPairs = treeCatamorphism[DefPairs](
(e: Expr) => Nil,
(s1: DefPairs, s2: DefPairs) => s1 ::: s2,
(e: Expr, dps: DefPairs) => e match {
case Let(i, e, _) => (i,e) :: dps
case _ => dps
},
expr)
private def killAllLets(expr: Expr) : Expr = searchAndReplaceDFS((e: Expr) => e match {
case Let(_,_,ex) => Some(ex)
case _ => None
})(expr)
def liftLets(expr: Expr) : Expr = {
val initialDefinitionPairs = allLetDefinitions(expr)
val definitionPairs = initialDefinitionPairs.map(p => (p._1, killAllLets(p._2)))
val occursLists : Map[Identifier,Set[Identifier]] = Map(definitionPairs.map((dp: DefPair) => (dp._1 -> variablesOf(dp._2).toSet.filter(_.isLetBinder))) : _*)
var newList : DefPairs = Nil
var placed : Set[Identifier] = Set.empty
val toPlace = definitionPairs.size
var placedC = 0
var traversals = 0
while(placedC < toPlace) {
if(traversals > toPlace + 1) {
scala.sys.error("Cycle in let definitions or multiple definition for the same identifier in liftLets : " + definitionPairs.mkString("\n"))
}
for((id,ex) <- definitionPairs) if (!placed(id)) {
if((occursLists(id) -- placed) == Set.empty) {
placed = placed + id
newList = (id,ex) :: newList
placedC = placedC + 1
}
}
traversals = traversals + 1
}
val noLets = killAllLets(expr)
val res = (newList.foldLeft(noLets)((e,iap) => Let(iap._1, iap._2, e)))
simplifyLets(res)
}
def wellOrderedLets(tree : Expr) : Boolean = {
val pairs = allLetDefinitions(tree)
val definitions: Set[Identifier] = Set(pairs.map(_._1) : _*)
val vars: Set[Identifier] = variablesOf(tree)
val intersection = vars intersect definitions
if(!intersection.isEmpty) {
intersection.foreach(id => {
Settings.reporter.error("Variable with identifier '" + id + "' has escaped its let-definition !")
})
false
} else {
vars.forall(id => if(id.isLetBinder) {
Settings.reporter.error("Variable with identifier '" + id + "' has lost its let-definition (it disappeared??)")
false
} else {
true
})
}
}
/* Fully expands all let expressions. */
def expandLets(expr: Expr) : Expr = {
def rec(ex: Expr, s: Map[Identifier,Expr]) : Expr = ex match {
case v @ Variable(id) if s.isDefinedAt(id) => rec(s(id), s)
case l @ Let(i,e,b) => rec(b, s + (i -> rec(e, s)))
case i @ IfExpr(t1,t2,t3) => IfExpr(rec(t1, s),rec(t2, s),rec(t3, s)).setType(i.getType)
case m @ MatchExpr(scrut,cses) => MatchExpr(rec(scrut, s), cses.map(inCase(_, s))).setType(m.getType).setPosInfo(m)
case n @ NAryOperator(args, recons) => {
var change = false
val rargs = args.map(a => {
val ra = rec(a, s)
if(ra != a) {
change = true
ra
} else {
a
}
})
if(change)
recons(rargs).setType(n.getType)
else
n
}
case b @ BinaryOperator(t1,t2,recons) => {
val r1 = rec(t1, s)
val r2 = rec(t2, s)
if(r1 != t1 || r2 != t2)
recons(r1,r2).setType(b.getType)
else
b
}
case u @ UnaryOperator(t,recons) => {
val r = rec(t, s)
if(r != t)
recons(r).setType(u.getType)
else
u
}
case t if t.isInstanceOf[Terminal] => t
case unhandled => scala.sys.error("Unhandled case in expandLets: " + unhandled)
}
def inCase(cse: MatchCase, s: Map[Identifier,Expr]) : MatchCase = cse match {
case SimpleCase(pat, rhs) => SimpleCase(pat, rec(rhs, s))
case GuardedCase(pat, guard, rhs) => GuardedCase(pat, rec(guard, s), rec(rhs, s))
}
rec(expr, Map.empty)
}
private var matchConverterCache = new scala.collection.mutable.HashMap[Expr,Expr]()
/** Rewrites all pattern-matching expressions into if-then-else expressions,
* with additional error conditions. Does not introduce additional variables.
* We use a cache because we can. */
def matchToIfThenElse(expr: Expr) : Expr = {
val toRet = if(matchConverterCache.isDefinedAt(expr)) {
matchConverterCache(expr)
} else {
val converted = convertMatchToIfThenElse(expr)
matchConverterCache(expr) = converted
converted
}
toRet
}
def conditionForPattern(in: Expr, pattern: Pattern) : Expr = pattern match {
case WildcardPattern(_) => BooleanLiteral(true)
case InstanceOfPattern(_,_) => scala.sys.error("InstanceOfPattern not yet supported.")
case CaseClassPattern(_, ccd, subps) => {
assert(ccd.fields.size == subps.size)
val pairs = ccd.fields.map(_.id).toList zip subps.toList
val subTests = pairs.map(p => conditionForPattern(CaseClassSelector(ccd, in, p._1), p._2))
val together = And(subTests)
And(CaseClassInstanceOf(ccd, in), together)
}
case TuplePattern(_, subps) => {
val TupleType(tpes) = in.getType
assert(tpes.size == subps.size)
val subTests = subps.zipWithIndex.map{case (p, i) => conditionForPattern(TupleSelect(in, i+1).setType(tpes(i)), p)}
And(subTests)
}
}
private def convertMatchToIfThenElse(expr: Expr) : Expr = {
def mapForPattern(in: Expr, pattern: Pattern) : Map[Identifier,Expr] = pattern match {
case WildcardPattern(None) => Map.empty
case WildcardPattern(Some(id)) => Map(id -> in)
case InstanceOfPattern(None, _) => Map.empty
case InstanceOfPattern(Some(id), _) => Map(id -> in)
case CaseClassPattern(b, ccd, subps) => {
assert(ccd.fields.size == subps.size)
val pairs = ccd.fields.map(_.id).toList zip subps.toList
val subMaps = pairs.map(p => mapForPattern(CaseClassSelector(ccd, in, p._1), p._2))
val together = subMaps.foldLeft(Map.empty[Identifier,Expr])(_ ++ _)
b match {
case Some(id) => Map(id -> in) ++ together
case None => together
}
}
case TuplePattern(b, subps) => {
val TupleType(tpes) = in.getType
assert(tpes.size == subps.size)
val maps = subps.zipWithIndex.map{case (p, i) => mapForPattern(TupleSelect(in, i+1).setType(tpes(i)), p)}
val map = maps.foldLeft(Map.empty[Identifier,Expr])(_ ++ _)
b match {
case Some(id) => map + (id -> in)
case None => map
}
}
}
def rewritePM(e: Expr) : Option[Expr] = e match {
case m @ MatchExpr(scrut, cases) => {
// println("Rewriting the following PM: " + e)
val condsAndRhs = for(cse <- cases) yield {
val map = mapForPattern(scrut, cse.pattern)
val patCond = conditionForPattern(scrut, cse.pattern)
val realCond = cse.theGuard match {
case Some(g) => And(patCond, replaceFromIDs(map, g))
case None => patCond
}
val newRhs = replaceFromIDs(map, cse.rhs)
(realCond, newRhs)
}
val optCondsAndRhs = if(SimplePatternMatching.isSimple(m)) {
// this is a hackish optimization: because we know all cases are covered, we replace the last condition by true (and that drops the check)
val lastExpr = condsAndRhs.last._2
condsAndRhs.dropRight(1) ++ Seq((BooleanLiteral(true),lastExpr))
} else {
condsAndRhs
}
val bigIte = optCondsAndRhs.foldRight[Expr](Error("non-exhaustive match").setType(bestRealType(m.getType)).setPosInfo(m))((p1, ex) => {
if(p1._1 == BooleanLiteral(true)) {
p1._2
} else {
IfExpr(p1._1, p1._2, ex).setType(m.getType)
}
})
Some(bigIte)
}
case _ => None
}
searchAndReplaceDFS(rewritePM)(expr)
}
private var mapGetConverterCache = new scala.collection.mutable.HashMap[Expr,Expr]()
/** Rewrites all map accesses with additional error conditions. */
def mapGetWithChecks(expr: Expr) : Expr = {
val toRet = if (mapGetConverterCache.isDefinedAt(expr)) {
mapGetConverterCache(expr)
} else {
val converted = convertMapGet(expr)
mapGetConverterCache(expr) = converted
converted
}
toRet
}
private def convertMapGet(expr: Expr) : Expr = {
def rewriteMapGet(e: Expr) : Option[Expr] = e match {
case mg @ MapGet(m,k) =>
val ida = MapIsDefinedAt(m, k)
Some(IfExpr(ida, mg, Error("key not found for map access").setType(mg.getType).setPosInfo(mg)).setType(mg.getType))
case _ => None
}
searchAndReplaceDFS(rewriteMapGet)(expr)
}
// prec: expression does not contain match expressions
def measureADTChildrenDepth(expression: Expr) : Int = {
import scala.math.max
def rec(ex: Expr, lm: Map[Identifier,Int]) : Int = ex match {
case Let(i,e,b) => rec(b,lm + (i -> rec(e,lm)))
case Variable(id) => lm.getOrElse(id, 0)
case CaseClassSelector(_, e, _) => rec(e,lm) + 1
case NAryOperator(args, _) => if(args.isEmpty) 0 else args.map(rec(_,lm)).max
case BinaryOperator(e1,e2,_) => max(rec(e1,lm), rec(e2,lm))
case UnaryOperator(e,_) => rec(e,lm)
case IfExpr(c,t,e) => max(max(rec(c,lm),rec(t,lm)),rec(e,lm))
case t: Terminal => 0
case _ => scala.sys.error("Not handled in measureChildrenDepth : " + ex)
}
rec(expression,Map.empty)
}
private val random = new scala.util.Random()
def randomValue(v: Variable) : Expr = randomValue(v.getType)
def simplestValue(v: Variable) : Expr = simplestValue(v.getType)
def randomValue(tpe: TypeTree) : Expr = tpe match {
case Int32Type => IntLiteral(random.nextInt(42))
case BooleanType => BooleanLiteral(random.nextBoolean())
case AbstractClassType(acd) =>
val children = acd.knownChildren
randomValue(classDefToClassType(children(random.nextInt(children.size))))
case CaseClassType(cd) =>
val fields = cd.fields
CaseClass(cd, fields.map(f => randomValue(f.getType)))
case _ => throw new Exception("I can't choose random value for type " + tpe)
}
def simplestValue(tpe: TypeTree) : Expr = tpe match {
case Int32Type => IntLiteral(0)
case BooleanType => BooleanLiteral(false)
case AbstractClassType(acd) => {
val children = acd.knownChildren
val simplerChildren = children.filter{
case ccd @ CaseClassDef(id, Some(parent), fields) =>
!fields.exists(vd => vd.getType match {
case AbstractClassType(fieldAcd) => acd == fieldAcd
case CaseClassType(fieldCcd) => ccd == fieldCcd
case _ => false
})
case _ => false
}
def orderByNumberOfFields(fst: ClassTypeDef, snd: ClassTypeDef) : Boolean = (fst, snd) match {
case (CaseClassDef(_, _, flds1), CaseClassDef(_, _, flds2)) => flds1.size <= flds2.size
case _ => true
}
val orderedChildren = simplerChildren.sortWith(orderByNumberOfFields)
simplestValue(classDefToClassType(orderedChildren.head))
}
case CaseClassType(ccd) =>
val fields = ccd.fields
CaseClass(ccd, fields.map(f => simplestValue(f.getType)))
case SetType(baseType) => EmptySet(baseType).setType(tpe)
case MapType(fromType, toType) => EmptyMap(fromType, toType).setType(tpe)
case FunctionType(fromTypes, toType) => AnonymousFunction(Seq.empty, simplestValue(toType)).setType(tpe)
case _ => throw new Exception("I can't choose simplest value for type " + tpe)
}
//guarentee that all IfExpr will be at the top level and as soon as you encounter a non-IfExpr, then no more IfExpr can be find in the sub-expressions
//require no-match, no-ets and only pure code
def hoistIte(expr: Expr): Expr = {
def transform(expr: Expr): Option[Expr] = expr match {
case uop@UnaryOperator(IfExpr(c, t, e), op) => Some(IfExpr(c, op(t).setType(uop.getType), op(e).setType(uop.getType)).setType(uop.getType))
case bop@BinaryOperator(IfExpr(c, t, e), t2, op) => Some(IfExpr(c, op(t, t2).setType(bop.getType), op(e, t2).setType(bop.getType)).setType(bop.getType))
case bop@BinaryOperator(t1, IfExpr(c, t, e), op) => Some(IfExpr(c, op(t1, t).setType(bop.getType), op(t1, e).setType(bop.getType)).setType(bop.getType))
case nop@NAryOperator(ts, op) => {
val iteIndex = ts.indexWhere{ case IfExpr(_, _, _) => true case _ => false }
if(iteIndex == -1) None else {
val (beforeIte, startIte) = ts.splitAt(iteIndex)
val afterIte = startIte.tail
val IfExpr(c, t, e) = startIte.head
Some(IfExpr(c,
op(beforeIte ++ Seq(t) ++ afterIte).setType(nop.getType),
op(beforeIte ++ Seq(e) ++ afterIte).setType(nop.getType)
).setType(nop.getType))
}
}
case _ => None
}
def fix[A](f: (A) => A, a: A): A = {
val na = f(a)
if(a == na) a else fix(f, na)
}
fix(searchAndReplaceDFS(transform), expr)
}
def genericTransform[C](down: PartialFunction[(Expr, C),(Expr, C)], up: PartialFunction[(Expr, C),(Expr, C)])(init: C)(expr: Expr) = {
val fDown = { x: (Expr, C) => if (down.isDefinedAt(x)) down(x) else x }
val fUp = { x: (Expr, C) => if (up.isDefinedAt(x)) up(x) else x }
def rec(in: (Expr, C)): (Expr, C) = {
val (expr, ctx) = fDown(in)
val newExpr = expr match {
case UnaryOperator(e, builder) => builder(rec((e, ctx))._1)
case BinaryOperator(e1, e2, builder) => builder(rec((e1, ctx))._1, rec((e2, ctx))._1)
case NAryOperator(es, builder) => builder(es.map(e => rec((e, ctx))._1))
}
fUp((newExpr, in._2))
}
rec((expr, init))
}
def genericDFS[C](up: PartialFunction[(Expr, C), (Expr, C)])(init: C)(e: Expr) =
genericTransform[C](Map.empty, up)(init)(e)
def genericBFS[C](down: PartialFunction[(Expr, C), (Expr, C)])(init: C)(e: Expr) =
genericTransform[C](down, Map.empty)(init)(e)
def patternMatchReconstruction(e: Expr): Expr = {
e
}
}