Skip to content
Snippets Groups Projects
Commit 120dcb2f authored by Katja Goltsova's avatar Katja Goltsova Committed by Viktor Kunčak
Browse files

Rename pair to unorderedPair

parent 0d8f286c
No related branches found
No related tags found
No related merge requests found
......@@ -21,7 +21,7 @@ object SetTheory {
val sameCardinality: ConstantPredicateLabel[2] = fromKernel(AxiomaticSetTheory.in).asInstanceOf[ConstantPredicateLabel[2]]
val emptySet: ConstantFunctionLabel[0] = fromKernel(AxiomaticSetTheory.emptySet).asInstanceOf[ConstantFunctionLabel[0]]
val unorderedPairSet: ConstantFunctionLabel[2] = fromKernel(AxiomaticSetTheory.pair).asInstanceOf[ConstantFunctionLabel[2]]
val unorderedPairSet: ConstantFunctionLabel[2] = fromKernel(AxiomaticSetTheory.unorderedPair).asInstanceOf[ConstantFunctionLabel[2]]
// val singletonSet: ConstantFunctionLabel[1] = fromKernel(AxiomaticSetTheory.singleton).asInstanceOf[ConstantFunctionLabel[1]]
val powerSet: ConstantFunctionLabel[1] = fromKernel(AxiomaticSetTheory.powerSet).asInstanceOf[ConstantFunctionLabel[1]]
val unionSet: ConstantFunctionLabel[1] = fromKernel(AxiomaticSetTheory.union).asInstanceOf[ConstantFunctionLabel[1]]
......
......@@ -42,7 +42,7 @@ private[settheory] trait SetTheoryDefinitions {
/**
* The symbol for the unordered pair function.
*/
final val pair = ConstantFunctionLabel("unordered_pair", 2)
final val unorderedPair = ConstantFunctionLabel("unordered_pair", 2)
/**
* The symbol for the powerset function.
......@@ -62,7 +62,7 @@ private[settheory] trait SetTheoryDefinitions {
/**
* Set Theory basic functions.
*/
final val functions = Set(emptySet, pair, powerSet, union, universe)
final val functions = Set(emptySet, unorderedPair, powerSet, union, universe)
/**
* The kernel theory loaded with Set Theory symbols and axioms.
......
......@@ -16,7 +16,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions {
final val emptySetAxiom: Formula = forall(x, !in(x, emptySet()))
final val extensionalityAxiom: Formula = forall(x, forall(y, forall(z, in(z, x) <=> in(z, y)) <=> (x === y)))
final val subsetAxiom: Formula = forall(x, forall(y, subset(x, y) <=> forall(z, in(z, x) ==> in(z, y))))
final val pairAxiom: Formula = forall(x, forall(y, forall(z, in(z, pair(x, y)) <=> (x === z) \/ (y === z))))
final val pairAxiom: Formula = forall(x, forall(y, forall(z, in(z, unorderedPair(x, y)) <=> (x === z) \/ (y === z))))
final val unionAxiom: Formula = forall(x, forall(z, in(x, union(z)) <=> exists(y, in(x, y) /\ in(y, z))))
final val powerAxiom: Formula = forall(x, forall(y, in(x, powerSet(y)) <=> subset(x, y)))
final val foundationAxiom: Formula = forall(x, !(x === emptySet()) ==> exists(y, in(y, x) /\ forall(z, in(z, x) ==> !in(z, y))))
......
......@@ -42,10 +42,10 @@ object SetTheory extends lisa.Main {
Seq(-1)
)
val pr2 = RightSubstIff(
Sequent(pr1.bot.right, Set(in(z, pair(x, y)) <=> in(z, pair(y, x)))),
Sequent(pr1.bot.right, Set(in(z, unorderedPair(x, y)) <=> in(z, unorderedPair(y, x)))),
0,
List(((x === z) \/ (y === z), in(z, pair(y, x)))),
LambdaFormulaFormula(Seq(h), in(z, pair(x, y)) <=> h)
List(((x === z) \/ (y === z), in(z, unorderedPair(y, x)))),
LambdaFormulaFormula(Seq(h), in(z, unorderedPair(x, y)) <=> h)
)
val pr3 = Cut(Sequent(pr1.bot.left, pr2.bot.right), 1, 2, pr2.bot.left.head)
val pr4 = RightForall(Sequent(Set(), Set(forall(z, pr2.bot.right.head))), 3, pr2.bot.right.head, z)
......@@ -55,8 +55,8 @@ object SetTheory extends lisa.Main {
)
val pairExt = SCSubproof(
{
val pairExt1 = instantiateForall(Proof(steps(), imports(ax"extensionalityAxiom")), ax"extensionalityAxiom", pair(x, y))
instantiateForall(pairExt1, pairExt1.conclusion.right.head, pair(y, x))
val pairExt1 = instantiateForall(Proof(steps(), imports(ax"extensionalityAxiom")), ax"extensionalityAxiom", unorderedPair(x, y))
instantiateForall(pairExt1, pairExt1.conclusion.right.head, unorderedPair(y, x))
},
Seq(-1)
)
......@@ -80,8 +80,8 @@ object SetTheory extends lisa.Main {
val z = VariableLabel("z")
val g = VariableLabel("g")
val h = VariableFormulaLabel("h")
val pxy = pair(x, y)
val pxy1 = pair(x1, y1)
val pxy = unorderedPair(x, y)
val pxy1 = unorderedPair(x1, y1)
val p0 = SCSubproof(
{
val p0 = SCSubproof(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment