Newer
Older
"metadata": {},
"outputs": [],
"source": [
"from datasets.Femnist import Femnist\n",
"from graphs import SmallWorld\n",
"from collections import defaultdict\n",
"import os\n",
"import json\n",
"import numpy as np\n"
]
},
{
"cell_type": "code",
"source": [
"a = FEMNIST\n",
"a"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"b = SmallWorld(6, 2, 2, 1)"
]
},
{
"cell_type": "code",
"source": [
"b.adj_list"
]
},
{
"cell_type": "code",
"source": [
"for i in range(12):\n",
" print(b.neighbors(i))"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"clients = []"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"num_samples = []\n",
"data = defaultdict(lambda : None)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"datadir = \"./leaf/data/femnist/data/train\"\n",
"files = os.listdir(datadir)\n",
"total_users=0\n",
"users = set()"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"files = os.listdir(datadir)[0:1]"
]
},
{
"cell_type": "code",
"source": [
"for f in files:\n",
" file_path = os.path.join(datadir, f)\n",
" print(file_path)\n",
" with open(file_path, 'r') as inf:\n",
" client_data = json.load(inf)\n",
" current_users = len(client_data['users'])\n",
" print(\"Current_Users: \", current_users)\n",
" total_users += current_users\n",
" users.update(client_data['users'])\n",
"\n",
"print(\"total_users: \", total_users)\n",
"print(\"total_users: \", len(users))\n",
"print(client_data['user_data'].keys())\n",
"print(np.array(client_data['user_data']['f3408_47']['x']).shape)\n",
"print(np.array(client_data['user_data']['f3408_47']['y']).shape)\n",
"print(np.array(client_data['user_data']['f3327_11']['x']).shape)\n",
"print(np.array(client_data['user_data']['f3327_11']['y']).shape)\n",
"print(np.unique(np.array(client_data['user_data']['f3327_11']['y'])))"
]
},
{
"cell_type": "code",
"source": [
"file = 'run.py'\n",
"with open(file, 'r') as inf:\n",
" print(inf.readline().strip())\n",
" print(inf.readlines())"
]
},
{
"cell_type": "code",
"source": [
"def f(l):\n",
" l[2] = 'c'\n",
"\n",
"a = ['a', 'a', 'a']\n",
"print(a)\n",
"f(a)\n",
"print(a)"
]
},
{
"cell_type": "code",
"source": [
"l = ['a', 'b', 'c']\n",
"print(l[:-1])"
]
},
{
"cell_type": "code",
"from localconfig import LocalConfig\n",
" config = LocalConfig(file_path)\n",
" for section in config:\n",
" print(\"Section: \", section)\n",
" for key, value in config.items(section):\n",
" print((key, value))\n",
" print(dict(config.items('DATASET')))\n",
{
"cell_type": "code",
"metadata": {},
"source": [
"def func(a = 1, b = 2, c = 3):\n",
" print(a + b + c)\n",
"\n",
"l = [3, 5, 7]\n",
"\n",
"func(*l)"
]
},
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch import multiprocessing as mp\n",
"\n",
"mp.spawn(fn = func, nprocs = 2, args = [], kwargs = {'a': 4, 'b': 5, 'c': 6})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"l = '[0.4, 0.2, 0.3, 0.1]'\n",
"type(eval(l))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f1 = Femnist(1, 'leaf/data/femnist/data/train')\n",
"f1.instantiate_dataset()\n",
"f1.train_x.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from decentralizepy.datasets.Femnist import Femnist\n",
"from decentralizepy.graphs.SmallWorld import SmallWorld\n",
"from decentralizepy.mappings.Linear import Linear\n",
"\n",
"f = Femnist(2, 'leaf/data/femnist/data/train', sizes=[0.6, 0.4])\n",
"g = SmallWorld(4, 1, 0.5)\n",
"l = Linear(2, 2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from decentralizepy.node.Node import Node\n",
"from torch import multiprocessing as mp\n",
"import logging\n",
"n1 = Node(0, l, g, f, \"./results\", logging.DEBUG)\n",
"n2 = Node(1, l, g, f, \"./results\", logging.DEBUG)\n",
"# mp.spawn(fn = Node, nprocs = 2, args=[l,g,f])"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from testing import f"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linear(in_features=1, out_features=1, bias=True)\n",
"1 OrderedDict([('weight', tensor([[0.9654]])), ('bias', tensor([-0.2141]))])\n",
"1 [{'params': [Parameter containing:\n",
"tensor([[0.9654]], requires_grad=True), Parameter containing:\n",
"tensor([-0.2141], requires_grad=True)], 'lr': 0.6, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]\n",
"1 OrderedDict([('weight', tensor([[0.]])), ('bias', tensor([-0.2141]))])\n",
"1 [{'params': [Parameter containing:\n",
"tensor([[0.]], requires_grad=True), Parameter containing:\n",
"tensor([-0.2141], requires_grad=True)], 'lr': 0.6, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]\n",
"0 OrderedDict([('weight', tensor([[0.]])), ('bias', tensor([-0.2141]))])\n",
"0 [{'params': [Parameter containing:\n",
"tensor([[0.]], requires_grad=True), Parameter containing:\n",
"tensor([-0.2141], requires_grad=True)], 'lr': 0.6, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]\n",
"0 OrderedDict([('weight', tensor([[0.]])), ('bias', tensor([-0.2141]))])\n",
"0 [{'params': [Parameter containing:\n",
"tensor([[0.]], requires_grad=True), Parameter containing:\n",
"tensor([-0.2141], requires_grad=True)], 'lr': 0.6, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False}]\n"
]
}
],
"source": [
"from torch import multiprocessing as mp\n",
"import torch\n",
"m1 = torch.nn.Linear(1,1)\n",
"o1 = torch.optim.SGD(m1.parameters(), 0.6)\n",
"print(m1)\n",
"\n",
"mp.spawn(fn = f, nprocs = 2, args=[m1, o1])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"metadata": {},
"source": [
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"o1.param_groups"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with torch.no_grad():\n",
" o1.param_groups[0][\"params\"][0].copy_(torch.zeros(1,))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"o1.param_groups"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m1.state_dict()"
]
},
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "996934296aa9d79be6c3d800a38d8fdb7dfa8fe7bb07df178f1397cde2cb8742"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('tff': conda)",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}