Newer
Older
import distutils
import json
import os
import sys
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
def plot(x_axis, means, stdevs, pos, nb_plots, title, label, loc, xlabel):
cmap = plt.get_cmap("gist_rainbow")
plt.title(title)
plt.xlabel(xlabel)
y_axis = list(means)
err = list(stdevs)
print("label:", label)
print("color: ", cmap(1 / nb_plots * pos))
plt.errorbar(
list(x_axis), y_axis, yerr=err, label=label, color=cmap(1 / nb_plots * pos)
)
plt.legend(loc=loc)
def plot_results(path, epochs, global_epochs="True"):
if global_epochs.lower() in ["true", "1", "t", "y", "yes"]:
global_epochs = True
else:
global_epochs = False
epochs = int(epochs)
# rounds = int(rounds)
folders = os.listdir(path)
folders.sort()
print("Reading folders from: ", path)
print("Folders: ", folders)
bytes_means, bytes_stdevs = {}, {}
meta_means, meta_stdevs = {}, {}
data_means, data_stdevs = {}, {}
files = os.listdir(path)
files = [f for f in files if f.endswith(".csv")]
train_loss = sorted([f for f in files if f.startswith("train_loss")])
test_acc = sorted([f for f in files if f.startswith("test_acc")])
test_loss = sorted([f for f in files if f.startswith("test_loss")])
min_losses = []
for i, f in enumerate(train_loss):
filepath = os.path.join(path, f)
with open(filepath, "r") as inf:
results_csv = pd.read_csv(inf)
# Plot Training loss
plt.figure(1)
if global_epochs:
rounds = results_csv["rounds"].iloc[0]
print("Rounds: ", rounds)
results_cr = results_csv[results_csv.rounds <= epochs * rounds]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = (
results_cr["rounds"].to_numpy() / rounds
) # list(np.arange(0, len(means), 1))
x_label = "global epochs"
else:
results_cr = results_csv[results_csv.rounds <= epochs]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = results_cr["rounds"].to_numpy()
x_label = "communication rounds"
min_losses.append(np.min(means))
plot(
x_axis,
means,
stdevs,
i,
len(train_loss),
"Training Loss",
f[len("train_loss") + 1 : -len(":2022-03-24T17:54.csv")],
"upper right",
x_label,
)
min_tlosses = []
for i, f in enumerate(test_loss):
filepath = os.path.join(path, f)
with open(filepath, "r") as inf:
results_csv = pd.read_csv(inf)
if global_epochs:
rounds = results_csv["rounds"].iloc[0]
print("Rounds: ", rounds)
results_cr = results_csv[results_csv.rounds <= epochs * rounds]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = (
results_cr["rounds"].to_numpy() / rounds
) # list(np.arange(0, len(means), 1))
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
x_label = "global epochs"
else:
results_cr = results_csv[results_csv.rounds <= epochs]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = results_cr["rounds"].to_numpy()
x_label = "communication rounds"
print("x axis:", x_axis)
min_tlosses.append(np.min(means))
# Plot Testing loss
plt.figure(2)
plot(
x_axis,
means,
stdevs,
i,
len(test_loss),
"Testing Loss",
f[len("test_loss") + 1 : -len(":2022-03-24T17:54.csv")],
"upper right",
x_label,
)
max_taccs = []
for i, f in enumerate(test_acc):
filepath = os.path.join(path, f)
with open(filepath, "r") as inf:
results_csv = pd.read_csv(inf)
if global_epochs:
rounds = results_csv["rounds"].iloc[0]
print("Rounds: ", rounds)
results_cr = results_csv[results_csv.rounds <= epochs * rounds]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = (
results_cr["rounds"].to_numpy() / rounds
) # list(np.arange(0, len(means), 1))
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
x_label = "global epochs"
else:
results_cr = results_csv[results_csv.rounds <= epochs]
means = results_cr["mean"].to_numpy()
stdevs = results_cr["std"].to_numpy()
x_axis = results_cr["rounds"].to_numpy()
x_label = "communication rounds"
max_taccs.append(np.max(means))
# Plot Testing Accuracy
plt.figure(3)
plot(
x_axis,
means,
stdevs,
i,
len(test_acc),
"Testing Accuracy",
f[len("test_acc") + 1 : -len(":2022-03-24T17:54.csv")],
"lower right",
x_label,
)
names_loss = [
f[len("train_loss") + 1 : -len(":2022-03-24T17:54.csv")] for f in train_loss
]
names_acc = [
f[len("test_acc") + 1 : -len(":2022-03-24T17:54.csv")] for f in test_acc
]
print(names_loss)
print(names_acc)
pf = pd.DataFrame(
{
"test_accuracy": max_taccs,
"test_losses": min_tlosses,
"train_losses": min_losses,
},
names_loss,
)
pf = pf.sort_values(["test_accuracy"], 0, ascending=False)
pf.to_csv(os.path.join(path, "best_results.csv"))
plt.figure(1)
plt.savefig(os.path.join(path, "ge_train_loss.png"), dpi=300)
plt.figure(2)
plt.savefig(os.path.join(path, "ge_test_loss.png"), dpi=300)
plt.figure(3)
plt.savefig(os.path.join(path, "ge_test_acc.png"), dpi=300)
if __name__ == "__main__":
assert len(sys.argv) == 4
# The args are:
# 1: the folder with the csv files,
# 2: the number of epochs / comm rounds to plot for,
# 3: True/False with True meaning plot global epochs and False plot communication rounds
print(sys.argv[1], sys.argv[2], sys.argv[3])
plot_results(sys.argv[1], sys.argv[2], sys.argv[3])