Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
decentralizepy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Milos Vujasinovic
decentralizepy
Commits
4f14c17f
Commit
4f14c17f
authored
3 years ago
by
Jeffrey Wigger
Browse files
Options
Downloads
Patches
Plain Diff
global epoch plotting and option for non centralized plotting
parent
d8b2fe11
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
eval/plot.py
+20
-5
20 additions, 5 deletions
eval/plot.py
eval/plotting_from_csv.py
+183
-0
183 additions, 0 deletions
eval/plotting_from_csv.py
with
203 additions
and
5 deletions
eval/plot.py
+
20
−
5
View file @
4f14c17f
...
@@ -36,8 +36,14 @@ def plot(means, stdevs, mins, maxs, title, label, loc):
...
@@ -36,8 +36,14 @@ def plot(means, stdevs, mins, maxs, title, label, loc):
plt
.
legend
(
loc
=
loc
)
plt
.
legend
(
loc
=
loc
)
def
plot_results
(
path
,
data_machine
=
"
machine0
"
,
data_node
=
0
):
def
plot_results
(
path
,
centralized
,
data_machine
=
"
machine0
"
,
data_node
=
0
):
folders
=
os
.
listdir
(
path
)
folders
=
os
.
listdir
(
path
)
if
centralized
.
lower
()
in
[
'
true
'
,
'
1
'
,
'
t
'
,
'
y
'
,
'
yes
'
]:
centralized
=
True
print
(
"
Centralized
"
)
else
:
centralized
=
False
folders
.
sort
()
folders
.
sort
()
print
(
"
Reading folders from:
"
,
path
)
print
(
"
Reading folders from:
"
,
path
)
print
(
"
Folders:
"
,
folders
)
print
(
"
Folders:
"
,
folders
)
...
@@ -82,7 +88,10 @@ def plot_results(path, data_machine="machine0", data_node=0):
...
@@ -82,7 +88,10 @@ def plot_results(path, data_machine="machine0", data_node=0):
)
)
# Plot Testing loss
# Plot Testing loss
plt
.
figure
(
2
)
plt
.
figure
(
2
)
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_loss
"
]
for
x
in
main_data
])
if
centralized
:
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_loss
"
]
for
x
in
main_data
])
else
:
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_loss
"
]
for
x
in
results
])
plot
(
means
,
stdevs
,
mins
,
maxs
,
"
Testing Loss
"
,
folder
,
"
upper right
"
)
plot
(
means
,
stdevs
,
mins
,
maxs
,
"
Testing Loss
"
,
folder
,
"
upper right
"
)
df
=
pd
.
DataFrame
(
df
=
pd
.
DataFrame
(
{
{
...
@@ -98,7 +107,10 @@ def plot_results(path, data_machine="machine0", data_node=0):
...
@@ -98,7 +107,10 @@ def plot_results(path, data_machine="machine0", data_node=0):
)
)
# Plot Testing Accuracy
# Plot Testing Accuracy
plt
.
figure
(
3
)
plt
.
figure
(
3
)
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_acc
"
]
for
x
in
main_data
])
if
centralized
:
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_acc
"
]
for
x
in
main_data
])
else
:
means
,
stdevs
,
mins
,
maxs
=
get_stats
([
x
[
"
test_acc
"
]
for
x
in
results
])
plot
(
means
,
stdevs
,
mins
,
maxs
,
"
Testing Accuracy
"
,
folder
,
"
lower right
"
)
plot
(
means
,
stdevs
,
mins
,
maxs
,
"
Testing Accuracy
"
,
folder
,
"
lower right
"
)
df
=
pd
.
DataFrame
(
df
=
pd
.
DataFrame
(
{
{
...
@@ -241,6 +253,9 @@ def plot_parameters(path):
...
@@ -241,6 +253,9 @@ def plot_parameters(path):
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
assert
len
(
sys
.
argv
)
==
2
assert
len
(
sys
.
argv
)
==
3
plot_results
(
sys
.
argv
[
1
])
# The args are:
# 1: the folder with the data
# 2: True/False: If True then the evaluation on the test set was centralized
plot_results
(
sys
.
argv
[
1
],
sys
.
argv
[
2
])
# plot_parameters(sys.argv[1])
# plot_parameters(sys.argv[1])
This diff is collapsed.
Click to expand it.
eval/plotting_from_csv.py
0 → 100644
+
183
−
0
View file @
4f14c17f
import
distutils
import
json
import
os
import
sys
import
numpy
as
np
import
pandas
as
pd
from
matplotlib
import
pyplot
as
plt
def
plot
(
x_axis
,
means
,
stdevs
,
pos
,
nb_plots
,
title
,
label
,
loc
,
xlabel
):
cmap
=
plt
.
get_cmap
(
"
gist_rainbow
"
)
plt
.
title
(
title
)
plt
.
xlabel
(
xlabel
)
y_axis
=
list
(
means
)
err
=
list
(
stdevs
)
print
(
"
label:
"
,
label
)
print
(
"
color:
"
,
cmap
(
1
/
nb_plots
*
pos
))
plt
.
errorbar
(
list
(
x_axis
),
y_axis
,
yerr
=
err
,
label
=
label
,
color
=
cmap
(
1
/
nb_plots
*
pos
)
)
plt
.
legend
(
loc
=
loc
)
def
plot_results
(
path
,
epochs
,
global_epochs
=
"
True
"
):
if
global_epochs
.
lower
()
in
[
'
true
'
,
'
1
'
,
'
t
'
,
'
y
'
,
'
yes
'
]:
global_epochs
=
True
else
:
global_epochs
=
False
epochs
=
int
(
epochs
)
# rounds = int(rounds)
folders
=
os
.
listdir
(
path
)
folders
.
sort
()
print
(
"
Reading folders from:
"
,
path
)
print
(
"
Folders:
"
,
folders
)
bytes_means
,
bytes_stdevs
=
{},
{}
meta_means
,
meta_stdevs
=
{},
{}
data_means
,
data_stdevs
=
{},
{}
files
=
os
.
listdir
(
path
)
files
=
[
f
for
f
in
files
if
f
.
endswith
(
"
.csv
"
)]
train_loss
=
sorted
([
f
for
f
in
files
if
f
.
startswith
(
"
train_loss
"
)])
test_acc
=
sorted
([
f
for
f
in
files
if
f
.
startswith
(
"
test_acc
"
)])
test_loss
=
sorted
([
f
for
f
in
files
if
f
.
startswith
(
"
test_loss
"
)])
min_losses
=
[]
for
i
,
f
in
enumerate
(
train_loss
):
filepath
=
os
.
path
.
join
(
path
,
f
)
with
open
(
filepath
,
"
r
"
)
as
inf
:
results_csv
=
pd
.
read_csv
(
inf
)
# Plot Training loss
plt
.
figure
(
1
)
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
print
(
"
Rounds:
"
,
rounds
)
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
*
rounds
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
/
rounds
# list(np.arange(0, len(means), 1))
x_label
=
"
global epochs
"
else
:
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
x_label
=
"
communication rounds
"
min_losses
.
append
(
np
.
min
(
means
))
plot
(
x_axis
,
means
,
stdevs
,
i
,
len
(
train_loss
),
"
Training Loss
"
,
f
[
len
(
"
train_loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)],
"
upper right
"
,
x_label
,
)
min_tlosses
=
[]
for
i
,
f
in
enumerate
(
test_loss
):
filepath
=
os
.
path
.
join
(
path
,
f
)
with
open
(
filepath
,
"
r
"
)
as
inf
:
results_csv
=
pd
.
read_csv
(
inf
)
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
print
(
"
Rounds:
"
,
rounds
)
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
*
rounds
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
/
rounds
# list(np.arange(0, len(means), 1))
x_label
=
"
global epochs
"
else
:
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
x_label
=
"
communication rounds
"
print
(
"
x axis:
"
,
x_axis
)
min_tlosses
.
append
(
np
.
min
(
means
))
# Plot Testing loss
plt
.
figure
(
2
)
plot
(
x_axis
,
means
,
stdevs
,
i
,
len
(
test_loss
),
"
Testing Loss
"
,
f
[
len
(
"
test_loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)],
"
upper right
"
,
x_label
,
)
max_taccs
=
[]
for
i
,
f
in
enumerate
(
test_acc
):
filepath
=
os
.
path
.
join
(
path
,
f
)
with
open
(
filepath
,
"
r
"
)
as
inf
:
results_csv
=
pd
.
read_csv
(
inf
)
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
print
(
"
Rounds:
"
,
rounds
)
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
*
rounds
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
/
rounds
# list(np.arange(0, len(means), 1))
x_label
=
"
global epochs
"
else
:
results_cr
=
results_csv
[
results_csv
.
rounds
<=
epochs
]
means
=
results_cr
[
"
mean
"
].
to_numpy
()
stdevs
=
results_cr
[
"
std
"
].
to_numpy
()
x_axis
=
results_cr
[
"
rounds
"
].
to_numpy
()
x_label
=
"
communication rounds
"
max_taccs
.
append
(
np
.
max
(
means
))
# Plot Testing Accuracy
plt
.
figure
(
3
)
plot
(
x_axis
,
means
,
stdevs
,
i
,
len
(
test_acc
),
"
Testing Accuracy
"
,
f
[
len
(
"
test_acc
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)],
"
lower right
"
,
x_label
,
)
names_loss
=
[
f
[
len
(
"
train_loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)]
for
f
in
train_loss
]
names_acc
=
[
f
[
len
(
"
test_acc
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)]
for
f
in
test_acc
]
print
(
names_loss
)
print
(
names_acc
)
pf
=
pd
.
DataFrame
(
{
"
test_accuracy
"
:
max_taccs
,
"
test_losses
"
:
min_tlosses
,
"
train_losses
"
:
min_losses
,
},
names_loss
,
)
pf
=
pf
.
sort_values
([
"
test_accuracy
"
],
0
,
ascending
=
False
)
pf
.
to_csv
(
os
.
path
.
join
(
path
,
"
best_results.csv
"
))
plt
.
figure
(
1
)
plt
.
savefig
(
os
.
path
.
join
(
path
,
"
ge_train_loss.png
"
),
dpi
=
300
)
plt
.
figure
(
2
)
plt
.
savefig
(
os
.
path
.
join
(
path
,
"
ge_test_loss.png
"
),
dpi
=
300
)
plt
.
figure
(
3
)
plt
.
savefig
(
os
.
path
.
join
(
path
,
"
ge_test_acc.png
"
),
dpi
=
300
)
if
__name__
==
"
__main__
"
:
assert
len
(
sys
.
argv
)
==
4
# The args are:
# 1: the folder with the csv files,
# 2: the number of epochs / comm rounds to plot for,
# 3: True/False with True meaning plot global epochs and False plot communication rounds
print
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
])
plot_results
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment