Newer
Older
function [ids_equilibrium,ids_equilibrium_description,varargout] = get_ids_equilibrium_fixed_boundary(shot,varargin);
%
% [ids_equilibrium,ids_equilibrium_description,varargout] = get_ids_equilibrium_fixed_boundary(shot,varargin);
%
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
%
ids_equilibrium = struct([]);
ids_equilibrium_description = struct([]);
% initialize input parser
p = inputParser;
% no required inputs here so one can call with empty args and get defaults parameters
% effectively required inputs should have defaults as empty
p.addOptional('shot', [], @(x) isempty(x) || (isnumeric(x) && isscalar(x) && (x == round(x)))); % integer
p.addOptional('empty_struct', -1, @(x) isstruct(x));
p.addOptional('comment', 'default comment', @(x) isempty(x) || ischar(x)); % char
p.parse;
defaults_equilibrium = p.Results; % to keep track of defaults
if nargin==1
p.parse(shot);
params = p.Results;
elseif nargin>=2
p.parse(shot,varargin{:});
params = p.Results;
else
p.parse;
if nargout>=3; varargout{1} = rmfield(p.Results,'shot'); end
return
end
% replace empty inputs with defaults
names = fieldnames(params);
mask = structfun(@isempty,params);
if any(mask),
params = rmfield(params,unique([names(mask); p.UsingDefaults.']));
if ~isfield(params, 'shot') || isnan(params.shot)
warning('No shot entered');
return
end
p.parse(params.shot,rmfield(params,'shot'));
params = p.Results;
end
if nargout>=3; varargout{1} = rmfield(p.Results,'shot'); end
params_equilibrium = params;
ids_equilibrium = params_equilibrium.empty_struct;
clear ids_equilibrium_description % so can add new subfields
ids_equilibrium.ids_properties.comment = params_equilibrium.comment;
ids_equilibrium.ids_properties.homogeneous_time = 1;
ids_equilibrium.ids_properties.source = ['TCV mds for shot = ' num2str(params_equilibrium.shot)];
ids_equilibrium.ids_properties.provider = 'get_ids_equilibrium_fixed_boundary';
ids_equilibrium.ids_properties.creation_date = date;
% As a general rule, for a new substructure under the main ids, construct a local structure like:
% "global_quantities" with subfields being the relevant data to get and a local structure:
% "global_quantities_desc" which contains the same subfields themselves containing the gdat string aftre shot used
%
% vacuum_toroidal_field and time, using homogeneous
%
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
vacuum_toroidal_field.b0=gdat(params_equilibrium.shot,'b0','source','liuqe'); % to get on liuqe time array
vacuum_toroidal_field_desc.b0 = '''b0'',''source'',''liuqe''';
vacuum_toroidal_field_desc.r0 = '.r0 subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.vacuum_toroidal_field.r0 = vacuum_toroidal_field.b0.r0;
ids_equilibrium.vacuum_toroidal_field.b0 = vacuum_toroidal_field.b0.data;
ids_equilibrium_description.vacuum_toroidal_field = vacuum_toroidal_field_desc;
ids_equilibrium.time = vacuum_toroidal_field.b0.t;
ids_equilibrium_description.time = '.t subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.time_slice(1:length(ids_equilibrium.time)) = ids_equilibrium.time_slice(1);
% load time array data to copy to time_slices
% global_quantities data into local global_quantities.* structure with correct end names and global_quantities_desc.* with description. Use temp.* and temp_desc.* structures for temporary data
% brute force solution load all eqdsks
% $$$ for it=1:length(ids_equilibrium.time)
% $$$ ids_equilibrium.time(it)
% $$$ temp.eqdsks{it}=gdat(params_equilibrium.shot,'eqdsk','time',ids_equilibrium.time(it),'write',0);
% $$$ end
% $$$ temp_desc.eqdsks{1} = '''eqdsk'',''time'',ids_equilibrium.time(it)';
global_quantities.area = gdat(params_equilibrium.shot,'area_edge');
global_quantities_desc.area = 'area_edge';
global_quantities.beta_normal = gdat(params_equilibrium.shot,'betan');
global_quantities_desc.beta_normal = 'betan';
global_quantities.beta_pol = gdat(params_equilibrium.shot,'betap');
global_quantities_desc.beta_pol = 'betap';
global_quantities.beta_tor = gdat(params_equilibrium.shot,'beta');
global_quantities_desc.beta_tor = 'beta';
global_quantities.energy_mhd = gdat(params_equilibrium.shot,'w_mhd');
global_quantities_desc.energy_mhd = 'w_mhd';
global_quantities.ip = gdat(params_equilibrium.shot,'ip');
global_quantities_desc.ip = 'ip';
% length_pol = gdat(params_equilibrium.shot,'length_pol'); % to be added
global_quantities.li_3 = gdat(params_equilibrium.shot,'li');
global_quantities_desc.li_3 = 'li';
temp.r_magnetic_axis = gdat(params_equilibrium.shot,'r_axis');
temp_desc.r_magnetic_axis = 'r_axis';
temp.z_magnetic_axis = gdat(params_equilibrium.shot,'z_axis');
temp_desc.z_magnetic_axis = 'z_axis';
temp.psi_axis = gdat(params_equilibrium.shot,'psi_axis'); % needs to add psi_edge sincepsi_axis liuqe assuming 0 dege value
temp_desc.psi_axis = 'psi_axis';
global_quantities.psi_boundary = gdat(params_equilibrium.shot,'psi_edge');
global_quantities_desc.psi_boundary = 'psi_edge';
global_quantities.q_95 = gdat(params_equilibrium.shot,'q95');
global_quantities_desc.q_95 = 'q95';
global_quantities.q_axis = gdat(params_equilibrium.shot,'q0'); % will be checked with q_rho?
global_quantities_desc.q_axis = 'q0';
temp.q_rho = gdat(params_equilibrium.shot,'q_rho');
temp_desc.q_rho = 'q_rho';
% surface = gdat(params_equilibrium.shot,'surface'); % to be added
global_quantities.volume = gdat(params_equilibrium.shot,'volume');
global_quantities_desc.volume = 'volume';
global_quantities.w_mhd = gdat(params_equilibrium.shot,'w_mhd');
global_quantities_desc.w_mhd = 'w_mhd';
global_quantities_fieldnames = fieldnames(global_quantities);
special_fields = {'magnetic_axis', 'psi_axis', 'q_min'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(global_quantities_fieldnames)
if ~any(strcmp(global_quantities_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}))
ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}) = ...
global_quantities.(global_quantities_fieldnames{i}).data(it);
else
special_fields{end+1} = global_quantities_fieldnames{i};
end
end
end
end
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
% special case
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r = temp.r_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.z = temp.z_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.psi_axis = temp.psi_axis.data(it) + ...
ids_equilibrium.time_slice{it}.global_quantities.psi_boundary;
[zz,izz]=min(temp.q_rho.data(:,it));
ids_equilibrium.time_slice{it}.global_quantities.q_min.value = zz;
ids_equilibrium.time_slice{it}.global_quantities.q_min.rho_tor_norm = temp.q_rho.grids_1d.rhotornorm(izz);
end
% for boundary in addition to lcfs
% active_limiter_point = gdat(params_equilibrium.shot,'active_limiter_point');
boundary.elongation = gdat(params_equilibrium.shot,'kappa');
boundary_desc.elongation = 'kappa';
% elongation_lower = gdat(params_equilibrium.shot,'elongation_lower');
% elongation_upper = gdat(params_equilibrium.shot,'elongation_upper');
boundary.minor_radius = gdat(params_equilibrium.shot,'a_minor');
boundary_desc.minor_radius = 'a_minor';
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner');
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer');
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner');
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer');
% strike_point = gdat(params_equilibrium.shot,'strike_point');
boundary.triangularity = gdat(params_equilibrium.shot,'delta');
boundary_desc.triangularity = 'delta';
boundary.triangularity_lower = gdat(params_equilibrium.shot,'delta_bottom');
boundary_desc.triangularity_lower = 'delta_bottom';
boundary.triangularity_upper = gdat(params_equilibrium.shot,'delta_top');
boundary_desc.triangularity_upper = 'delta_top';
temp.n_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''n_xpts'''',''''liuqe.m'''')');
temp_desc.n_x_point = '''tcv_eq(''''n_xpts'''',''''liuqe.m'''')''';
temp.r_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''r_xpts'''',''''liuqe.m'''')');
temp_desc.r_x_point = '''tcv_eq(''''r_xpts'''',''''liuqe.m'''')''';
temp.z_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''z_xpts'''',''''liuqe.m'''')');
temp_desc.z_x_point = '''tcv_eq(''''z_xpts'''',''''liuqe.m'''')''';
temp.rgeom = gdat(params_equilibrium.shot,'rgeom');
temp_desc.rgeom = 'rgeom';
temp.zgeom = gdat(params_equilibrium.shot,'zgeom');
temp_desc.zgeom = 'zgeom';
temp.r_lcfs = gdat(params_equilibrium.shot,'r_contour_edge');
temp_desc.r_lcfs = 'r_contour_edge';
temp.z_lcfs = gdat(params_equilibrium.shot,'z_contour_edge');
temp_desc.z_lcfs = 'z_contour_edge';
boundary_fieldnames = fieldnames(boundary);
special_fields = {'lcfs', 'geometric_axis', 'x_point'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(boundary_fieldnames)
if ~any(strcmp(boundary_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}))
ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}) = ...
boundary.(boundary_fieldnames{i}).data(it);
else
special_fields{end+1} = boundary_fieldnames{i};
end
end
end
end
% special cases
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.boundary.outline.r = temp.r_lcfs.data(it);
ids_equilibrium.time_slice{it}.boundary.outline.z = temp.z_lcfs.data(it);
ids_equilibrium.time_slice{it}.boundary.lcfs.r = ids_equilibrium.time_slice{it}.boundary.outline.r;
ids_equilibrium.time_slice{it}.boundary.lcfs.z = ids_equilibrium.time_slice{it}.boundary.outline.z;
ids_equilibrium.time_slice{it}.boundary.geometric_axis.r = temp.rgeom.data(it);
ids_equilibrium.time_slice{it}.boundary.geometric_axis.z = temp.zgeom.data(it);
if temp.n_x_point.data(it) > 0
ids_equilibrium.time_slice{it}.boundary.x_point(1:temp.n_x_point.data(it)) = ids_equilibrium.time_slice{it}.boundary.x_point(1);
for i=1:length(temp.n_x_point.data(it))
ids_equilibrium.time_slice{it}.boundary.x_point{i}.r = temp.r_x_point.data(i,it);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.z = temp.z_x_point.data(i,it);
end
end
end
%
%% profiles_1d (cannot use eqdsk since not same radial mesh)
%
% area = gdat(params_equilibrium.shot,'area');
% b_average = gdat(params_equilibrium.shot,'b_average');
% beta_pol = gdat(params_equilibrium.shot,'beta_pol');
% b_field_average = gdat(params_equilibrium.shot,'b_field_average');
% b_field_max = gdat(params_equilibrium.shot,'b_field_max');
% b_field_min = gdat(params_equilibrium.shot,'b_field_min');
% b_max = gdat(params_equilibrium.shot,'b_max');
% b_min = gdat(params_equilibrium.shot,'b_min');
% darea_dpsi = gdat(params_equilibrium.shot,'darea_dpsi');
% darea_drho_tor = gdat(params_equilibrium.shot,'darea_drho_tor');
profiles_1d.dpressure_dpsi = gdat(params_equilibrium.shot,'pprime');
% dpsi_drho_tor = gdat(params_equilibrium.shot,'dpsi_drho_tor');
% dvolume_dpsi = gdat(params_equilibrium.shot,'dvolume_dpsi');
% dvolume_drho_tor = gdat(params_equilibrium.shot,'dvolume_drho_tor');
% elongation = gdat(params_equilibrium.shot,'elongation');
profiles_1d.f_df_dpsi = gdat(params_equilibrium.shot,'ttprime');
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
profiles_1d.f = gdat(params_equilibrium.shot,'rbphi_rho');
% geometric_axis = gdat(params_equilibrium.shot,'geometric_axis');
% gm1 = gdat(params_equilibrium.shot,'gm1');
% gm2 = gdat(params_equilibrium.shot,'gm2');
% gm3 = gdat(params_equilibrium.shot,'gm3');
% gm4 = gdat(params_equilibrium.shot,'gm4');
% gm5 = gdat(params_equilibrium.shot,'gm5');
% gm6 = gdat(params_equilibrium.shot,'gm6');
% gm7 = gdat(params_equilibrium.shot,'gm7');
% gm8 = gdat(params_equilibrium.shot,'gm8');
% gm9 = gdat(params_equilibrium.shot,'gm9');
% j_parallel = gdat(params_equilibrium.shot,'j_parallel');
% j_tor = gdat(params_equilibrium.shot,'j_tor');
% magnetic_shear = gdat(params_equilibrium.shot,'magnetic_shear');
% mass_density = gdat(params_equilibrium.shot,'mass_density');
profiles_1d.phi = gdat(params_equilibrium.shot,'phi_tor');
profiles_1d.pressure = gdat(params_equilibrium.shot,'pressure');
% psi = gdat(params_equilibrium.shot,'psi_rho'); % (could take from .x of any like rhotor and psi_axis, psi_edge from global_quantities)
profiles_1d.q = gdat(params_equilibrium.shot,'q_rho');
profiles_1d.rho_tor = gdat(params_equilibrium.shot,'rhotor');
%rho_tor_norm = gdat(params_equilibrium.shot,'rhotor_norm'); % from rho_tor
profiles_1d.rho_volume_norm = gdat(params_equilibrium.shot,'rhovol');
% r_inboard = gdat(params_equilibrium.shot,'r_inboard');
% r_outboard = gdat(params_equilibrium.shot,'r_outboard');
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner');
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer');
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner');
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer');
% surface = gdat(params_equilibrium.shot,'surface');
% trapped_fraction = gdat(params_equilibrium.shot,'trapped_fraction');
% triangularity_lower = gdat(params_equilibrium.shot,'triangularity_lower');
% triangularity_upper = gdat(params_equilibrium.shot,'triangularity_upper');
profiles_1d.volume = gdat(params_equilibrium.shot,'volume_rho');
profiles_1d_fieldnames = fieldnames(profiles_1d);
special_fields = {'geometric_axis', 'rho_tor_norm', 'psi'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(profiles_1d_fieldnames)
if ~any(strcmp(profiles_1d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}))
if ~ischar(profiles_1d.(profiles_1d_fieldnames{i}).data) && ~isempty(profiles_1d.(profiles_1d_fieldnames{i}).data) ...
&& size(profiles_1d.(profiles_1d_fieldnames{i}).data,2)>=it
ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}) = ...
profiles_1d.(profiles_1d_fieldnames{i}).data(:,it);
end
else
special_fields{end+1} = profiles_1d_fieldnames{i};
end
end
end
end
% special cases
nrho = length(profiles_1d.rho_tor.x);
ntime = length(temp.psi_axis.data);
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor_norm = ids_equilibrium.time_slice{it}.profiles_1d.rho_tor./ ...
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor(end);
ids_equilibrium.time_slice{it}.profiles_1d.psi = (1-profiles_1d.rho_tor.x.^2).*temp.psi_axis.data(it) + ...
global_quantities.psi_boundary.data(it);