Newer
Older
function [ids_equilibrium,ids_equilibrium_description,varargout] = tcv_get_ids_equilibrium(shot,ids_equil_empty,varargin);
%
% [ids_equilibrium,ids_equilibrium_description,varargout] = get_ids_equilibrium_fixed_boundary(shot,varargin);
%
[ids_equilibrium, params_equilibrium] = tcv_ids_headpart(shot,ids_equil_empty,'equilibrium',varargin{:});
% As a general rule, for a new substructure under the main ids, construct a local structure like:
% "global_quantities" with subfields being the relevant data to get and a local structure:
% "global_quantities_desc" which contains the same subfields themselves containing the gdat string aftre shot used
%
% vacuum_toroidal_field and time, using homogeneous
%
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
vacuum_toroidal_field.b0=gdat(params_equilibrium.shot,'b0','source','liuqe'); % to get on liuqe time array
vacuum_toroidal_field_desc.b0 = '''b0'',''source'',''liuqe''';
vacuum_toroidal_field_desc.r0 = '.r0 subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.vacuum_toroidal_field.r0 = vacuum_toroidal_field.b0.r0;
ids_equilibrium.vacuum_toroidal_field.b0 = vacuum_toroidal_field.b0.data;
ids_equilibrium_description.vacuum_toroidal_field = vacuum_toroidal_field_desc;
ids_equilibrium.time = vacuum_toroidal_field.b0.t;
ids_equilibrium_description.time = '.t subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.time_slice(1:length(ids_equilibrium.time)) = ids_equilibrium.time_slice(1);
% load time array data to copy to time_slices
% global_quantities data into local global_quantities.* structure with correct end names and global_quantities_desc.* with description. Use temp.* and temp_desc.* structures for temporary data
% brute force solution load all eqdsks
% $$$ for it=1:length(ids_equilibrium.time)
% $$$ ids_equilibrium.time(it)
% $$$ temp.eqdsks{it}=gdat(params_equilibrium.shot,'eqdsk','time',ids_equilibrium.time(it),'write',0);
% $$$ end
% $$$ temp_desc.eqdsks{1} = '''eqdsk'',''time'',ids_equilibrium.time(it)';
global_quantities.area = gdat(params_equilibrium.shot,'area_edge');
global_quantities_desc.area = 'area_edge';
global_quantities.beta_normal = gdat(params_equilibrium.shot,'betan');
global_quantities_desc.beta_normal = 'betan';
global_quantities.beta_pol = gdat(params_equilibrium.shot,'betap');
global_quantities_desc.beta_pol = 'betap';
global_quantities.beta_tor = gdat(params_equilibrium.shot,'beta');
global_quantities_desc.beta_tor = 'beta';
global_quantities.energy_mhd = gdat(params_equilibrium.shot,'w_mhd');
global_quantities_desc.energy_mhd = 'w_mhd';
global_quantities.ip = gdat(params_equilibrium.shot,'ip');
global_quantities_desc.ip = 'ip';
% length_pol = gdat(params_equilibrium.shot,'length_pol'); % to be added
global_quantities.li_3 = gdat(params_equilibrium.shot,'li');
global_quantities_desc.li_3 = 'li';
temp.r_magnetic_axis = gdat(params_equilibrium.shot,'r_axis');
temp_desc.r_magnetic_axis = 'r_axis';
temp.z_magnetic_axis = gdat(params_equilibrium.shot,'z_axis');
temp_desc.z_magnetic_axis = 'z_axis';
temp.psi_axis = gdat(params_equilibrium.shot,'psi_axis'); % needs to add psi_edge sincepsi_axis liuqe assuming 0 dege value
temp_desc.psi_axis = 'psi_axis';
global_quantities.psi_boundary = gdat(params_equilibrium.shot,'psi_edge');
global_quantities_desc.psi_boundary = 'psi_edge';
global_quantities.q_95 = gdat(params_equilibrium.shot,'q95');
global_quantities_desc.q_95 = 'q95';
global_quantities.q_axis = gdat(params_equilibrium.shot,'q0'); % will be checked with q_rho?
global_quantities_desc.q_axis = 'q0';
temp.q_rho = gdat(params_equilibrium.shot,'q_rho');
temp_desc.q_rho = 'q_rho';
% surface = gdat(params_equilibrium.shot,'surface'); % to be added
global_quantities.volume = gdat(params_equilibrium.shot,'volume');
global_quantities_desc.volume = 'volume';
global_quantities.w_mhd = gdat(params_equilibrium.shot,'w_mhd');
global_quantities_desc.w_mhd = 'w_mhd';
global_quantities_fieldnames = fieldnames(global_quantities);
special_fields = {'magnetic_axis', 'psi_axis', 'q_min'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(global_quantities_fieldnames)
if ~any(strcmp(global_quantities_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}))
ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}) = ...
global_quantities.(global_quantities_fieldnames{i}).data(it);
else
special_fields{end+1} = global_quantities_fieldnames{i};
end
end
end
end
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
% special case
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r = temp.r_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.z = temp.z_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.psi_axis = temp.psi_axis.data(it) + ...
ids_equilibrium.time_slice{it}.global_quantities.psi_boundary;
[zz,izz]=min(temp.q_rho.data(:,it));
ids_equilibrium.time_slice{it}.global_quantities.q_min.value = zz;
ids_equilibrium.time_slice{it}.global_quantities.q_min.rho_tor_norm = temp.q_rho.grids_1d.rhotornorm(izz);
end
% for boundary in addition to lcfs
% active_limiter_point = gdat(params_equilibrium.shot,'active_limiter_point');
boundary.elongation = gdat(params_equilibrium.shot,'kappa');
boundary_desc.elongation = 'kappa';
% elongation_lower = gdat(params_equilibrium.shot,'elongation_lower');
% elongation_upper = gdat(params_equilibrium.shot,'elongation_upper');
boundary.minor_radius = gdat(params_equilibrium.shot,'a_minor');
boundary_desc.minor_radius = 'a_minor';
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner');
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer');
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner');
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer');
% strike_point = gdat(params_equilibrium.shot,'strike_point');
boundary.triangularity = gdat(params_equilibrium.shot,'delta');
boundary_desc.triangularity = 'delta';
boundary.triangularity_lower = gdat(params_equilibrium.shot,'delta_bottom');
boundary_desc.triangularity_lower = 'delta_bottom';
boundary.triangularity_upper = gdat(params_equilibrium.shot,'delta_top');
boundary_desc.triangularity_upper = 'delta_top';
temp.n_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''n_xpts'''',''''liuqe.m'''')');
temp_desc.n_x_point = '''tcv_eq(''''n_xpts'''',''''liuqe.m'''')''';
temp.r_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''r_xpts'''',''''liuqe.m'''')');
temp_desc.r_x_point = '''tcv_eq(''''r_xpts'''',''''liuqe.m'''')''';
temp.z_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''z_xpts'''',''''liuqe.m'''')');
temp_desc.z_x_point = '''tcv_eq(''''z_xpts'''',''''liuqe.m'''')''';
temp.rgeom = gdat(params_equilibrium.shot,'rgeom');
temp_desc.rgeom = 'rgeom';
temp.zgeom = gdat(params_equilibrium.shot,'zgeom');
temp_desc.zgeom = 'zgeom';
temp.r_lcfs = gdat(params_equilibrium.shot,'r_contour_edge');
temp_desc.r_lcfs = 'r_contour_edge';
temp.z_lcfs = gdat(params_equilibrium.shot,'z_contour_edge');
temp_desc.z_lcfs = 'z_contour_edge';
boundary_fieldnames = fieldnames(boundary);
special_fields = {'lcfs', 'geometric_axis', 'x_point'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(boundary_fieldnames)
if ~any(strcmp(boundary_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}))
ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}) = ...
boundary.(boundary_fieldnames{i}).data(it);
else
special_fields{end+1} = boundary_fieldnames{i};
end
end
end
end
% special cases
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.boundary.outline.r = temp.r_lcfs.data(:,it);
ids_equilibrium.time_slice{it}.boundary.outline.z = temp.z_lcfs.data(:,it);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
ids_equilibrium.time_slice{it}.boundary.lcfs.r = ids_equilibrium.time_slice{it}.boundary.outline.r;
ids_equilibrium.time_slice{it}.boundary.lcfs.z = ids_equilibrium.time_slice{it}.boundary.outline.z;
ids_equilibrium.time_slice{it}.boundary.geometric_axis.r = temp.rgeom.data(it);
ids_equilibrium.time_slice{it}.boundary.geometric_axis.z = temp.zgeom.data(it);
if temp.n_x_point.data(it) > 0
ids_equilibrium.time_slice{it}.boundary.x_point(1:temp.n_x_point.data(it)) = ids_equilibrium.time_slice{it}.boundary.x_point(1);
for i=1:length(temp.n_x_point.data(it))
ids_equilibrium.time_slice{it}.boundary.x_point{i}.r = temp.r_x_point.data(i,it);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.z = temp.z_x_point.data(i,it);
end
end
end
%
%% profiles_1d (cannot use eqdsk since not same radial mesh)
%
% area = gdat(params_equilibrium.shot,'area');
% b_average = gdat(params_equilibrium.shot,'b_average');
% beta_pol = gdat(params_equilibrium.shot,'beta_pol');
% b_field_average = gdat(params_equilibrium.shot,'b_field_average');
% b_field_max = gdat(params_equilibrium.shot,'b_field_max');
% b_field_min = gdat(params_equilibrium.shot,'b_field_min');
% b_max = gdat(params_equilibrium.shot,'b_max');
% b_min = gdat(params_equilibrium.shot,'b_min');
% darea_dpsi = gdat(params_equilibrium.shot,'darea_dpsi');
% darea_drho_tor = gdat(params_equilibrium.shot,'darea_drho_tor');
profiles_1d.dpressure_dpsi = gdat(params_equilibrium.shot,'pprime');
% dpsi_drho_tor = gdat(params_equilibrium.shot,'dpsi_drho_tor');
% dvolume_dpsi = gdat(params_equilibrium.shot,'dvolume_dpsi');
% dvolume_drho_tor = gdat(params_equilibrium.shot,'dvolume_drho_tor');
% elongation = gdat(params_equilibrium.shot,'elongation');
profiles_1d.f_df_dpsi = gdat(params_equilibrium.shot,'ttprime');
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
profiles_1d.f = gdat(params_equilibrium.shot,'rbphi_rho');
% geometric_axis = gdat(params_equilibrium.shot,'geometric_axis');
% gm1 = gdat(params_equilibrium.shot,'gm1');
% gm2 = gdat(params_equilibrium.shot,'gm2');
% gm3 = gdat(params_equilibrium.shot,'gm3');
% gm4 = gdat(params_equilibrium.shot,'gm4');
% gm5 = gdat(params_equilibrium.shot,'gm5');
% gm6 = gdat(params_equilibrium.shot,'gm6');
% gm7 = gdat(params_equilibrium.shot,'gm7');
% gm8 = gdat(params_equilibrium.shot,'gm8');
% gm9 = gdat(params_equilibrium.shot,'gm9');
% j_parallel = gdat(params_equilibrium.shot,'j_parallel');
% j_tor = gdat(params_equilibrium.shot,'j_tor');
% magnetic_shear = gdat(params_equilibrium.shot,'magnetic_shear');
% mass_density = gdat(params_equilibrium.shot,'mass_density');
profiles_1d.phi = gdat(params_equilibrium.shot,'phi_tor');
profiles_1d.pressure = gdat(params_equilibrium.shot,'pressure');
% psi = gdat(params_equilibrium.shot,'psi_rho'); % (could take from .x of any like rhotor and psi_axis, psi_edge from global_quantities)
profiles_1d.q = gdat(params_equilibrium.shot,'q_rho');
profiles_1d.rho_tor = gdat(params_equilibrium.shot,'rhotor');
%rho_tor_norm = gdat(params_equilibrium.shot,'rhotor_norm'); % from rho_tor
profiles_1d.rho_volume_norm = gdat(params_equilibrium.shot,'rhovol');
% r_inboard = gdat(params_equilibrium.shot,'r_inboard');
% r_outboard = gdat(params_equilibrium.shot,'r_outboard');
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner');
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer');
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner');
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer');
% surface = gdat(params_equilibrium.shot,'surface');
% trapped_fraction = gdat(params_equilibrium.shot,'trapped_fraction');
% triangularity_lower = gdat(params_equilibrium.shot,'triangularity_lower');
% triangularity_upper = gdat(params_equilibrium.shot,'triangularity_upper');
profiles_1d.volume = gdat(params_equilibrium.shot,'volume_rho');
profiles_1d_fieldnames = fieldnames(profiles_1d);
special_fields = {'geometric_axis', 'rho_tor_norm', 'psi'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(profiles_1d_fieldnames)
if ~any(strcmp(profiles_1d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}))
if ~ischar(profiles_1d.(profiles_1d_fieldnames{i}).data) && ~isempty(profiles_1d.(profiles_1d_fieldnames{i}).data) ...
&& size(profiles_1d.(profiles_1d_fieldnames{i}).data,2)>=it
ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}) = ...
profiles_1d.(profiles_1d_fieldnames{i}).data(:,it);
end
else
special_fields{end+1} = profiles_1d_fieldnames{i};
end
end
end
end
% special cases
nrho = length(profiles_1d.rho_tor.x);
ntime = length(temp.psi_axis.data);
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor_norm = ids_equilibrium.time_slice{it}.profiles_1d.rho_tor./ ...
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor(end);
ids_equilibrium.time_slice{it}.profiles_1d.psi = (1-profiles_1d.rho_tor.x.^2).*temp.psi_axis.data(it) + ...
global_quantities.psi_boundary.data(it);
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
%
%% profiles_2d{1} ala eqdsk, only this one thus grid_type=1
%
% b_field_r = gdat(params_equilibrium.shot,'b_field_r');
% b_field_tor = gdat(params_equilibrium.shot,'b_field_tor');
% b_field_z = gdat(params_equilibrium.shot,'b_field_z');
% b_r = gdat(params_equilibrium.shot,'b_r');
% b_tor = gdat(params_equilibrium.shot,'b_tor');
% b_z = gdat(params_equilibrium.shot,'b_z');
% grid = gdat(params_equilibrium.shot,'grid'); % special
profiles_2d.grid_type.name = 'rectangular';
profiles_2d.grid_type.index = 1;
profiles_2d.grid_type.description = 'Cylindrical R,Z ala eqdsk';
% j_parallel = gdat(params_equilibrium.shot,'j_parallel');
% j_tor = gdat(params_equilibrium.shot,'j_tor');
% phi = gdat(params_equilibrium.shot,'phi');
profiles_2d.psi = gdat(params_equilibrium.shot,'psi');
% r = gdat(params_equilibrium.shot,'r'); % not to be filled since in grid.dim1
% theta = gdat(params_equilibrium.shot,'theta');
% z = gdat(params_equilibrium.shot,'z'); % not to be filled since in grid.dim2
profiles_2d_fieldnames = fieldnames(profiles_2d);
special_fields = {'grid', 'grid_type'}; % fields needing non-automatic treatments
for it=1:length(ids_equilibrium.time)
for i=1:length(profiles_2d_fieldnames)
if ~any(strcmp(profiles_2d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}))
if ~ischar(profiles_2d.(profiles_2d_fieldnames{i}).data) && ~isempty(profiles_2d.(profiles_2d_fieldnames{i}).data) ...
&& size(profiles_2d.(profiles_2d_fieldnames{i}).data,2)>=it
ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}) = ...
profiles_2d.(profiles_2d_fieldnames{i}).data(:,:,it);
end
else
special_fields{end+1} = profiles_2d_fieldnames{i};
end
end
end
end
% special cases
for it=1:length(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.name = profiles_2d.grid_type.name;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.index = profiles_2d.grid_type.index;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.description = profiles_2d.grid_type.description;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim1 = profiles_2d.psi.dim{1};
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim2 = profiles_2d.psi.dim{2};
end