Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
gdat
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SPC
gdat
Commits
5d8ffe68
Commit
5d8ffe68
authored
10 months ago
by
Antonia Frank
Browse files
Options
Downloads
Patches
Plain Diff
Cleanup code and spacing, add comments to make more clear what is happening
parent
01b7a9d8
No related branches found
No related tags found
1 merge request
!137
Add quantities to ids for MRE
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/TCV_IMAS/tcv_get_ids_core_sources.m
+83
-76
83 additions, 76 deletions
matlab/TCV_IMAS/tcv_get_ids_core_sources.m
with
83 additions
and
76 deletions
matlab/TCV_IMAS/tcv_get_ids_core_sources.m
+
83
−
76
View file @
5d8ffe68
...
...
@@ -88,122 +88,129 @@ last_index = last_index+1; % add if statement to only increment if bs source ha
%% ec
% load data
ec_gdat
=
gdat
(
shot
,
'ec_data'
);
ec_data
=
ec_gdat
.
ec
.
ec_data
;
ec_time
=
ec_data
.
p_dens
.
t
;
n_ec_time
=
numel
(
ec_time
);
ec_t_grid
=
powers_gdat
.
ec
.
t
;
ec_n_t
=
numel
(
ec_t_grid
);
ec_inputs
=
ec_gdat
.
ec
.
ec_inputs
;
ec_gdat
=
gdat
(
shot
,
'ec_data'
);
ec_data
=
ec_gdat
.
ec
.
ec_data
;
ec_inputs
=
ec_gdat
.
ec
.
ec_inputs
;
% get tgrid from gdat ec_data
ec_data_tgrid
=
ec_data
.
p_dens
.
t
;
nt_ec_data
=
numel
(
ec_data_tgrid
);
% get tgrid from gdat powers
ec_powers_tgrid
=
powers_gdat
.
ec
.
t
;
nt_ec_powers
=
numel
(
ec_powers_tgrid
);
% retrieve active launcher information from ec_inputs
nb_launchers
=
numel
(
ec_inputs
.
launchers_active
.
data
);
active_launchers
=
find
(
ec_inputs
.
launchers_active
.
data
==
1
)
'
;
n_active_launchers
=
sum
(
ec_inputs
.
launchers_active
.
data
);
% Setup structures for active launchers from template
main_desc
=
'Source from electron cyclotron heating and current drive'
;
id_ec
.
index
=
3
;
id_ec
.
name
=
'ec'
;
for
i_lau
=
active_launchers
id_ec
.
description
=
sprintf
(
'L%i/G%i, %s'
,
i_lau
,
ec_inputs
.
gyro2launcher
.
data
(
i_lau
),
main_desc
);
ids_core_sources
.
source
{
last_index
+
i_lau
}
=
source_template
;
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
identifier
=
id_ec
;
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
profiles_1d
(
1
:
ec_n_t
)
=
{
profiles_template
};
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
(
1
:
ec_n_t
)
=
{
globals_template
};
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
profiles_1d
(
1
:
nt_ec_powers
)
=
{
profiles_template
};
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
(
1
:
nt_ec_powers
)
=
{
globals_template
};
end
% get data for globals from gdat powers and fill in ids_structure
ec_total_pow
=
transpose
(
powers_gdat
.
ec
.
data
(:,
nb_launchers
+
1
));
%use power from powers_gdat(injected ec power) instead of ec_data power
ec_total_pow
(
isnan
(
ec_total_pow
))
=
0
;
ec_total_cur
=
ec_data
.
cd_tot
.
data
(
nb_launchers
+
1
,:);
ec_total_cur
(
isnan
(
ec_total_cur
))
=
0
;
for
i_lau
=
active_launchers
for
ii
=
1
:
ec_n_t
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
profiles_1d
{
ii
}
.
time
=
ec_t_grid
(
ii
);
% profiles time
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
{
ii
}
.
time
=
ec_t_grid
(
ii
);
% globals time
% globals
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
{
ii
}
.
time
=
ec_t_grid
(
ii
);
for
ii
=
1
:
nt_ec_powers
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
{
ii
}
.
time
=
ec_powers_tgrid
(
ii
);
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
{
ii
}
.
power
=
ec_total_pow
(
ii
);
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
global_quantities
{
ii
}
.
current_parallel
=
ec_total_cur
(
ii
);
end
end
% interpoating p_dens profiles from 'ec_time' grid (toray time nodes) to 'ec_t_grid' (injected power time)
p_dens
=
ec_data
.
p_dens
.
data
;
p_integrated
=
ec_data
.
p_integrated
.
data
;
cd_dens
=
ec_data
.
cd_dens
.
data
;
% interpoating p_dens profiles from 'ec_data_tgrid' grid (toray tgrid) to 'ec_powers_tgrid' (powers tgrid)
p_dens
=
ec_data
.
p_dens
.
data
;
p_integrated
=
ec_data
.
p_integrated
.
data
;
cd_dens
=
ec_data
.
cd_dens
.
data
;
cd_integrated
=
ec_data
.
cd_integrated
.
data
;
p_ec_injected
=
powers_gdat
.
ec
.
data
;
it
=
iround_os
(
ec_t_grid
,
ec_time
);
sparse_p_ec_injected
=
p_ec_injected
(
it
,:);
% injected ec power vals corresponding to ec_time grid
rho_grid
=
size
(
p_dens
,
1
);
% calculate normalised profiles on ec_time grid
norm_p_dens
=
zeros
(
rho_grid
,
n_active_launchers
,
n_ec_time
);
norm_p_integrated
=
zeros
(
rho_grid
,
n_active_launchers
,
n_ec_time
);
norm_cd_dens
=
zeros
(
rho_grid
,
n_active_launchers
,
n_ec_time
);
norm_cd_integrated
=
zeros
(
rho_grid
,
n_active_launchers
,
n_ec_time
);
for
t
=
1
:
n_ec_time
norm_p_dens_temp
=
zeros
(
rho_grid
,
n_active_launchers
);
norm_p_integrated_temp
=
zeros
(
rho_grid
,
n_active_launchers
);
norm_cd_dens_temp
=
zeros
(
rho_grid
,
n_active_launchers
);
norm_cd_integrated_temp
=
zeros
(
rho_grid
,
n_active_launchers
);
it
=
iround_os
(
ec_powers_tgrid
,
ec_data_tgrid
);
sparse_p_ec_injected
=
p_ec_injected
(
it
,:);
% injected ec power vals corresponding to ec_data_tgrid
n_rho
=
size
(
p_dens
,
1
);
% calculate normalised profiles on ec_data_tgrid grid
norm_p_dens
=
zeros
(
n_rho
,
n_active_launchers
,
nt_ec_data
);
norm_p_integrated
=
zeros
(
n_rho
,
n_active_launchers
,
nt_ec_data
);
norm_cd_dens
=
zeros
(
n_rho
,
n_active_launchers
,
nt_ec_data
);
norm_cd_integrated
=
zeros
(
n_rho
,
n_active_launchers
,
nt_ec_data
);
for
it
=
1
:
nt_ec_data
norm_p_dens_temp
=
zeros
(
n_rho
,
n_active_launchers
);
norm_p_integrated_temp
=
zeros
(
n_rho
,
n_active_launchers
);
norm_cd_dens_temp
=
zeros
(
n_rho
,
n_active_launchers
);
norm_cd_integrated_temp
=
zeros
(
n_rho
,
n_active_launchers
);
for
i_lau
=
n_active_launchers
norm_p_dens_temp
(:,
i_lau
)
=
p_dens
(:,
active_launchers
(
i_lau
),
t
)
.
/
sparse_p_ec_injected
(
t
,
active_launchers
(
i_lau
));
norm_p_integrated_temp
(:,
i_lau
)
=
p_integrated
(:,
active_launchers
(
i_lau
))
.
/
sparse_p_ec_injected
(
t
,
active_launchers
(
i_lau
));
norm_cd_dens_temp
(:,
i_lau
)
=
cd_dens
(:,
active_launchers
(
i_lau
),
t
)
.
/
sparse_p_ec_injected
(
t
,
i_lau
);
norm_cd_integrated_temp
(:,
i_lau
)
=
cd_integrated
(:,
active_launchers
(
i_lau
),
t
)
.
/
sparse_p_ec_injected
(
t
,
active_launchers
(
i_lau
));
norm_p_dens_temp
(:,
i_lau
)
=
p_dens
(:,
active_launchers
(
i_lau
),
i
t
)
.
/
sparse_p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
norm_p_integrated_temp
(:,
i_lau
)
=
p_integrated
(:,
active_launchers
(
i_lau
))
.
/
sparse_p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
norm_cd_dens_temp
(:,
i_lau
)
=
cd_dens
(:,
active_launchers
(
i_lau
),
i
t
)
.
/
sparse_p_ec_injected
(
i
t
,
i_lau
);
norm_cd_integrated_temp
(:,
i_lau
)
=
cd_integrated
(:,
active_launchers
(
i_lau
),
i
t
)
.
/
sparse_p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
end
norm_p_dens
(:,:,
t
)
=
norm_p_dens_temp
;
norm_p_integrated
(:,:,
t
)
=
norm_p_integrated_temp
;
norm_cd_dens
(:,:,
t
)
=
norm_cd_dens_temp
;
norm_cd_integrated
(:,:,
t
)
=
norm_cd_integrated_temp
;
norm_p_dens
(:,:,
i
t
)
=
norm_p_dens_temp
;
norm_p_integrated
(:,:,
i
t
)
=
norm_p_integrated_temp
;
norm_cd_dens
(:,:,
i
t
)
=
norm_cd_dens_temp
;
norm_cd_integrated
(:,:,
i
t
)
=
norm_cd_integrated_temp
;
end
% interpolate normalised p_dens profiles on ec_t
_
grid
interp_norm_p_dens
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_norm_p_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_norm_cd_dens
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_norm_cd_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
for
rho
=
1
:
rho
_grid
% interpolate normalised p_dens profiles on ec_
powers_
tgrid
interp_norm_p_dens
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_norm_p_integrated
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_norm_cd_dens
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_norm_cd_integrated
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
for
i
rho
=
1
:
n_
rho
for
i_lau
=
1
:
n_active_launchers
profile_p_dens
=
squeeze
(
norm_p_dens
(
rho
,
i_lau
,
:));
profile_p_integrated
=
squeeze
(
norm_p_integrated
(
rho
,
i_lau
,
:));
profile_cd_dens
=
squeeze
(
norm_cd_dens
(
rho
,
i_lau
,
:));
profile_cd_integrated
=
squeeze
(
norm_cd_integrated
(
rho
,
i_lau
,
:));
interp_profile_p_dens
=
interp1
(
ec_time
,
profile_p_dens
,
ec_t_grid
);
interp_profile_p_integrated
=
interp1
(
ec_time
,
profile_p_integrated
,
ec_t_grid
);
interp_profile_cd_dens
=
interp1
(
ec_time
,
profile_cd_dens
,
ec_t_grid
);
interp_profile_cd_integrated
=
interp1
(
ec_time
,
profile_cd_integrated
,
ec_t_grid
);
interp_norm_p_dens
(
rho
,
i_lau
,
:)
=
interp_profile_p_dens
;
interp_norm_p_integrated
(
rho
,
i_lau
,
:)
=
interp_profile_p_integrated
;
interp_norm_cd_dens
(
rho
,
i_lau
,
:)
=
interp_profile_cd_dens
;
interp_norm_cd_integrated
(
rho
,
i_lau
,
:)
=
interp_profile_cd_integrated
;
profile_p_dens
=
squeeze
(
norm_p_dens
(
irho
,
i_lau
,:));
profile_p_integrated
=
squeeze
(
norm_p_integrated
(
irho
,
i_lau
,:));
profile_cd_dens
=
squeeze
(
norm_cd_dens
(
irho
,
i_lau
,:));
profile_cd_integrated
=
squeeze
(
norm_cd_integrated
(
irho
,
i_lau
,:));
interp_profile_p_dens
=
interp1
(
ec_data_tgrid
,
profile_p_dens
,
ec_powers_tgrid
);
interp_profile_p_integrated
=
interp1
(
ec_data_tgrid
,
profile_p_integrated
,
ec_powers_tgrid
);
interp_profile_cd_dens
=
interp1
(
ec_data_tgrid
,
profile_cd_dens
,
ec_powers_tgrid
);
interp_profile_cd_integrated
=
interp1
(
ec_data_tgrid
,
profile_cd_integrated
,
ec_powers_tgrid
);
interp_norm_p_dens
(
irho
,
i_lau
,:)
=
interp_profile_p_dens
;
interp_norm_p_integrated
(
irho
,
i_lau
,:)
=
interp_profile_p_integrated
;
interp_norm_cd_dens
(
irho
,
i_lau
,:)
=
interp_profile_cd_dens
;
interp_norm_cd_integrated
(
irho
,
i_lau
,:)
=
interp_profile_cd_integrated
;
end
end
% normalised & interpolated profiles * p_ec_injected on ec_t
_
grid
interp_p_dens
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_p_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_cd_dens
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
interp_cd_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
,
ec_n_t
);
for
t
=
1
:
numel
(
ec_t
_
grid
)
unnormalised_p_dens
=
zeros
(
rho
_grid
,
n_active_launchers
);
unnormalised_p_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
);
unnormalised_cd_dens
=
zeros
(
rho
_grid
,
n_active_launchers
);
unnormalised_cd_integrated
=
zeros
(
rho
_grid
,
n_active_launchers
);
% normalised & interpolated profiles * p_ec_injected on ec_
powers_
tgrid
interp_p_dens
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_p_integrated
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_cd_dens
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
interp_cd_integrated
=
zeros
(
n_
rho
,
n_active_launchers
,
nt_ec_powers
);
for
i
t
=
1
:
numel
(
ec_
powers_
tgrid
)
unnormalised_p_dens
=
zeros
(
n_
rho
,
n_active_launchers
);
unnormalised_p_integrated
=
zeros
(
n_
rho
,
n_active_launchers
);
unnormalised_cd_dens
=
zeros
(
n_
rho
,
n_active_launchers
);
unnormalised_cd_integrated
=
zeros
(
n_
rho
,
n_active_launchers
);
for
i_lau
=
1
:
n_active_launchers
unnormalised_p_dens
(:,
i_lau
)
=
interp_norm_p_dens
(:,
i_lau
,
t
)
.*
p_ec_injected
(
t
,
active_launchers
(
i_lau
));
unnormalised_p_integrated
(:,
i_lau
)
=
interp_norm_p_integrated
(:,
i_lau
,
t
)
.*
p_ec_injected
(
t
,
active_launchers
(
i_lau
));
unnormalised_cd_dens
(:,
i_lau
)
=
interp_norm_cd_dens
(:,
i_lau
,
t
)
.*
p_ec_injected
(
t
,
active_launchers
(
i_lau
));
unnormalised_cd_integrated
(:,
i_lau
)
=
interp_norm_cd_integrated
(:,
i_lau
,
t
)
.*
p_ec_injected
(
t
,
active_launchers
(
i_lau
));
unnormalised_p_dens
(:,
i_lau
)
=
interp_norm_p_dens
(:,
i_lau
,
i
t
)
.*
p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
unnormalised_p_integrated
(:,
i_lau
)
=
interp_norm_p_integrated
(:,
i_lau
,
i
t
)
.*
p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
unnormalised_cd_dens
(:,
i_lau
)
=
interp_norm_cd_dens
(:,
i_lau
,
i
t
)
.*
p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
unnormalised_cd_integrated
(:,
i_lau
)
=
interp_norm_cd_integrated
(:,
i_lau
,
i
t
)
.*
p_ec_injected
(
i
t
,
active_launchers
(
i_lau
));
end
interp_p_dens
(:,:,
t
)
=
unnormalised_p_dens
;
interp_p_integrated
(:,:,
t
)
=
unnormalised_p_integrated
;
interp_cd_dens
(:,:,
t
)
=
unnormalised_cd_dens
;
interp_cd_integrated
(:,:,
t
)
=
unnormalised_cd_integrated
;
interp_p_dens
(:,:,
i
t
)
=
unnormalised_p_dens
;
interp_p_integrated
(:,:,
i
t
)
=
unnormalised_p_integrated
;
interp_cd_dens
(:,:,
i
t
)
=
unnormalised_cd_dens
;
interp_cd_integrated
(:,:,
i
t
)
=
unnormalised_cd_integrated
;
end
for
ii
=
1
:
ec_n_t
% fill profiles_1d with interpolated profiles
for
ii
=
1
:
nt_ec_powers
for
i_lau
=
active_launchers
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
profiles_1d
{
ii
}
.
time
=
ec_powers_tgrid
(
ii
);
% profiles time
launcher_index
=
find
(
active_launchers
==
i_lau
);
ids_core_sources
.
source
{
last_index
+
i_lau
}
.
profiles_1d
{
ii
}
.
grid
.
rho_tor_norm
=
...
ec_data
.
p_dens
.
rhotor_norm
(
1
,:);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment