Newer
Older

Antoine Cyril David Hoffmann
committed
!! MODULE NUMERICS
! The module numerics contains a set of routines that are called only once at
! the begining of a run. These routines do not need to be optimzed
MODULE numerics
USE basic
USE prec_const
USE grid
USE utility

Antoine Cyril David Hoffmann
committed
implicit none
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op

Antoine Cyril David Hoffmann
committed
PUBLIC :: compute_lin_coeff
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, Only : dnjs
USE coeff
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
J = max(jmaxe,jmaxi)
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator

Antoine Cyril David Hoffmann
committed
USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E
IMPLICIT NONE
Antoine Cyril David Hoffmann
committed
INTEGER :: j_int

Antoine Cyril David Hoffmann
committed
REAL(dp) :: j_dp, y_, factj
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO iz = izgs,izge
!!!!! Electron kernels !!!!!
IF(KIN_E) THEN
DO ij = ijgs_e, ijge_e
j_int = jarray_e(ij)
Antoine Cyril David Hoffmann
committed
j_dp = REAL(j_int,dp)
y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2
IF(j_int .LT. 0) THEN

Antoine Cyril David Hoffmann
committed
kernel_e(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
IF (ijs_e .EQ. 1) &
!!!!! Ion kernels !!!!!
DO ij = ijgs_i, ijge_i
Antoine Cyril David Hoffmann
committed
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2

Antoine Cyril David Hoffmann
committed
IF(j_int .LT. 0) THEN
kernel_i(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
IF (ijs_i .EQ. 1) &
Antoine Cyril David Hoffmann
committed
ENDDO
ENDDO
ENDDO
Antoine Cyril David Hoffmann
committed
ENDDO
!! Correction term for the evaluation of the heat flux
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = &
2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
-1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0)
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) &
- Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (&
2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0))
ENDDO
Antoine Cyril David Hoffmann
committed
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
SUBROUTINE evaluate_EM_op
IMPLICIT NONE
CALL evaluate_poisson_op
CALL evaluate_ampere_op
END SUBROUTINE evaluate_EM_op
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic

Antoine Cyril David Hoffmann
committed
USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : qe2_taue, qi2_taui, KIN_E
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
!!!!!!!!!!!!!!!!! Ion contribution
! loop over n only if the max polynomial degree
pol_i = 0._dp
DO ini=1,jmaxi+1
pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
IF (KIN_E) THEN ! Kinetic model
! loop over n only if the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
ELSE ! Adiabatic model

Antoine Cyril David Hoffmann
committed
pol_e = qe2_taue - 1._dp
ENDIF
inv_poisson_op(iky, ikx, iz) = 1._dp/(qi2_taui - pol_i + qe2_taue - pol_e)

Antoine Cyril David Hoffmann
committed
inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i)
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_ampere_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_ampere_op
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i
USE geometry, ONLY : hatB
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! We do not solve Ampere if beta = 0 to spare waste of ressources
IF(SOLVE_AMPERE) THEN
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
kperp2 = kparray(iky,ikx,iz,0)**2
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_ampere_op(iky, ikx, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
pol_i = 0._dp
! loop over n only up to the max polynomial degree
DO ini=1,jmaxi+1
pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_i = q_i**2/(sigma_i**2) * pol_i
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
! loop over n only up to the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_e = q_e**2/(sigma_e**2) * pol_e
inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e))
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
ENDIF
END SUBROUTINE evaluate_ampere_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff
USE array, ONLY: xnepj, &
ynepp1j, ynepm1j, ynepp1jm1, ynepm1jm1,&
zNepm1j, zNepm1jp1, zNepm1jm1,&
xnepp1j, xnepm1j, xnepp2j, xnepm2j,&
xnepjp1, xnepjm1,&
xphij_e, xphijp1_e, xphijm1_e,&
xpsij_e, xpsijp1_e, xpsijm1_e,&
xnipj, &
ynipp1j, ynipm1j, ynipp1jm1, ynipm1jm1,&
zNipm1j, zNipm1jp1, zNipm1jm1,&
xnipp1j, xnipm1j, xnipp2j, xnipm2j,&
xnipjp1, xnipjm1,&
xphij_i, xphijp1_i, xphijm1_i,&
xpsij_i, xpsijp1_i, xpsijm1_i
USE model, ONLY: k_Te, k_Ti, k_Ne, k_Ni, k_cB, k_gB, KIN_E,&
tau_e, tau_i, sigma_e, sigma_i, q_e, q_i
USE prec_const
USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, &
ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i
IF(KIN_E) THEN
CALL lin_coeff(k_Te,k_Ne,k_cB,k_gB,tau_e,q_e,sigma_e,&
parray_e(ips_e:ipe_e),jarray_e(ijs_e:ije_e),ips_e,ipe_e,ijs_e,ije_e,&
xnepj,xnepp1j,xnepm1j,xnepp2j,xnepm2j,xnepjp1,xnepjm1,&
ynepp1j,ynepm1j,ynepp1jm1,ynepm1jm1,zNepm1j,zNepm1jp1,zNepm1jm1,&
xphij_e,xphijp1_e,xphijm1_e,xpsij_e,xpsijp1_e,xpsijm1_e)
ENDIF
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
CALL lin_coeff(k_Ti,k_Ni,k_cB,k_gB,tau_i,q_i,sigma_i,&
parray_i(ips_i:ipe_i),jarray_i(ijs_i:ije_i),ips_i,ipe_i,ijs_i,ije_i,&
xnipj,xnipp1j,xnipm1j,xnipp2j,xnipm2j,xnipjp1,xnipjm1,&
ynipp1j,ynipm1j,ynipp1jm1,ynipm1jm1,zNipm1j,zNipm1jp1,zNipm1jm1,&
xphij_i,xphijp1_i,xphijm1_i,xpsij_i,xpsijp1_i,xpsijm1_i)
CONTAINS
SUBROUTINE lin_coeff(k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a,&
parray_a,jarray_a,ips_a,ipe_a,ijs_a,ije_a,&
xnapj,xnapp1j,xnapm1j,xnapp2j,xnapm2j,xnapjp1,xnapjm1,&
ynapp1j,ynapm1j,ynapp1jm1,ynapm1jm1,zNapm1j,zNapm1jp1,zNapm1jm1,&
xphij_a,xphijp1_a,xphijm1_a,xpsij_a,xpsijp1_a,xpsijm1_a)
IMPLICIT NONE
! INPUTS
REAL(dp), INTENT(IN) :: k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a
INTEGER, DIMENSION(ips_a:ipe_a), INTENT(IN) :: parray_a
INTEGER, DIMENSION(ijs_a:ije_a), INTENT(IN) :: jarray_a
INTEGER, INTENT(IN) :: ips_a,ipe_a,ijs_a,ije_a
! OUTPUTS (linear coefficients used in moment_eq_rhs_mod.F90)
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xnapj
REAL(dp), DIMENSION(ips_a:ipe_a), INTENT(OUT) :: xnapp1j, xnapm1j, xnapp2j, xnapm2j
REAL(dp), DIMENSION(ijs_a:ije_a), INTENT(OUT) :: xnapjp1, xnapjm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: zNapm1j, zNapm1jp1, zNapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xphij_a, xphijp1_a, xphijm1_a
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xpsij_a, xpsijp1_a, xpsijm1_a
INTEGER :: p_int, j_int ! polynom. dagrees
REAL(dp) :: p_dp, j_dp
!! linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! All Napj terms
xnapj(ip,ij) = tau_a/q_a*(k_cB*(2._dp*p_dp + 1._dp) &
+k_gB*(2._dp*j_dp + 1._dp))
! Mirror force terms
ynapp1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp+1._dp)
ynapm1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp+1._dp)
ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
! Trapping terms
zNapm1j (ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp+1._dp)*SQRT(p_dp)
zNapm1jp1(ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
zNapm1jm1(ip,ij) = -SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
ENDDO
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
! Landau damping coefficients (ddz napj term)
xnapp1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp+1._dp)
xnapm1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp)
! Magnetic curvature term
xnapp2j(ip) = tau_a/q_a * k_cB * SQRT((p_dp+1._dp)*(p_dp + 2._dp))
xnapm2j(ip) = tau_a/q_a * k_cB * SQRT( p_dp *(p_dp - 1._dp))
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! Magnetic gradient term
xnapjp1(ij) = -tau_a/q_a * k_gB * (j_dp + 1._dp)
xnapjm1(ij) = -tau_a/q_a * k_gB * j_dp
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij_a(ip,ij) = +k_Na + 2._dp*j_dp*k_Ta
xphijp1_a(ip,ij) = -k_Ta*(j_dp+1._dp)
xphijm1_a(ip,ij) = -k_Ta* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij_a(ip,ij) = +k_Ta/SQRT2
xphijp1_a(ip,ij) = 0._dp; xphijm1_a(ip,ij) = 0._dp;
ELSE
xphij_a(ip,ij) = 0._dp; xphijp1_a(ip,ij) = 0._dp
xphijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Electromagnatic linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij_a (ip,ij) = +(k_Na + (2._dp*j_dp+1._dp)*k_Ta)* SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = - k_Ta*(j_dp+1._dp) * SQRT(tau_a)/sigma_a
xpsijm1_a(ip,ij) = - k_Ta* j_dp * SQRT(tau_a)/sigma_a
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij_a (ip,ij) = + k_Ta*SQRT3/SQRT2 * SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = 0._dp; xpsijm1_a(ip,ij) = 0._dp;
ELSE
xpsij_a (ip,ij) = 0._dp; xpsijp1_a(ip,ij) = 0._dp
xpsijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
END SUBROUTINE lin_coeff
END SUBROUTINE compute_lin_coeff
END MODULE numerics