Newer
Older
module geometry
! computes geometrical quantities
! Adapted from B.J.Frei MOLIX code (2021)
use prec_const
use model
use grid
use array
use fields
use basic
Antoine Cyril David Hoffmann
committed
use calculus, ONLY: simpson_rule_z
use miller, ONLY: set_miller_parameters, get_miller
implicit none
Antoine Cyril David Hoffmann
committed
PRIVATE
! Geometry input parameters
Antoine Cyril David Hoffmann
committed
CHARACTER(len=16), &
PUBLIC, PROTECTED :: geom
REAL(dp), PUBLIC, PROTECTED :: q0 = 1.4_dp ! safety factor
REAL(dp), PUBLIC, PROTECTED :: shear = 0._dp ! magnetic field shear
REAL(dp), PUBLIC, PROTECTED :: eps = 0.18_dp ! inverse aspect ratio
REAL(dp), PUBLIC, PROTECTED :: alpha_MHD = 0 ! shafranov shift effect alpha = -q2 R dbeta/dr
! parameters for Miller geometry

Antoine Cyril David Hoffmann
committed
REAL(dp), PUBLIC, PROTECTED :: kappa = 1._dp ! elongation (1 for circular)
REAL(dp), PUBLIC, PROTECTED :: s_kappa = 0._dp ! r normalized derivative skappa = r/kappa dkappa/dr
REAL(dp), PUBLIC, PROTECTED :: delta = 0._dp ! triangularity
REAL(dp), PUBLIC, PROTECTED :: s_delta = 0._dp ! '' sdelta = r/sqrt(1-delta2) ddelta/dr
REAL(dp), PUBLIC, PROTECTED :: zeta = 0._dp ! squareness
REAL(dp), PUBLIC, PROTECTED :: s_zeta = 0._dp ! '' szeta = r dzeta/dr

Antoine Cyril David Hoffmann
committed
! to apply shift in the parallel z-BC if shearless
REAL(dp), PUBLIC, PROTECTED :: shift_y = 0._dp ! for Arno
! Chooses the type of parallel BC we use for the unconnected kx modes (active for non-zero shear only)
! 'periodic' : Connect a disconnected kx to a mode on the other cadran
! 'dirichlet' : Connect a disconnected kx to 0
! 'disconnected' : Connect all kx to 0
! 'shearless' : Connect all kx to itself
CHARACTER(len=256), &
PUBLIC, PROTECTED :: parallel_bc
! GENE unused additional parameters for miller_mod
REAL(dp), PUBLIC, PROTECTED :: edge_opt = 0._dp ! meant to redistribute the points in z
REAL(dp), PUBLIC, PROTECTED :: major_R = 1._dp ! major radius
REAL(dp), PUBLIC, PROTECTED :: major_Z = 0._dp ! vertical elevation
REAL(dp), PUBLIC, PROTECTED :: dpdx_pm_geom = 0._dp ! amplitude mag. eq. pressure grad.
REAL(dp), PUBLIC, PROTECTED :: C_y = 0._dp ! defines y coordinate : Cy (q theta - phi)
REAL(dp), PUBLIC, PROTECTED :: C_xy = 1._dp ! defines x coordinate : B = Cxy Vx x Vy
! Geometrical auxiliary variables
LOGICAL, PUBLIC, PROTECTED :: SHEARED = .false. ! flag for shear magn. geom or not
Antoine Cyril David Hoffmann
committed
! Curvature
REAL(dp), PUBLIC, DIMENSION(:,:,:,:), ALLOCATABLE :: Ckxky ! dimensions: kx, ky, z, odd/even p
! Jacobian
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: Jacobian ! dimensions: z, odd/even p
COMPLEX(dp), PUBLIC, PROTECTED :: iInt_Jacobian ! Inverse integrated Jacobian
! Metric
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: gxx, gxy, gxz, gyy, gyz, gzz ! dimensions: z, odd/even p
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: dxdr, dxdZ, Rc, phic, Zc
! derivatives of magnetic field strength

Antoine Cyril David Hoffmann
committed
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: dBdx, dBdy, dBdz
Antoine Cyril David Hoffmann
committed
! Relative magnetic field strength
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatB, hatB_NL
Antoine Cyril David Hoffmann
committed
! Relative strength of major radius
REAL(dp), PUBLIC, DIMENSION(:,:), ALLOCATABLE :: hatR, hatZ
! Some geometrical coefficients
REAL(dp), PUBLIC, DIMENSION(:,:) , ALLOCATABLE :: gradz_coeff ! 1 / [ J_{xyz} \hat{B} ]
! Array to map the index of mode (kx,ky,-pi) to (kx+2pi*s*ky,ky,pi) for sheared periodic boundary condition

Antoine Cyril David Hoffmann
committed
INTEGER, PUBLIC, DIMENSION(:,:), ALLOCATABLE :: ikx_zBC_L, ikx_zBC_R

Antoine Cyril David Hoffmann
committed
! pb_phase, for parallel boundary phase, contains the factor that occurs when taking into account
! that q0 is defined in the middle of the fluxtube whereas the radial position spans in [0,Lx)
! This shift introduces a (-1)^(Nexc*iky) phase change that is included in GENE
COMPLEX(dp), PUBLIC, DIMENSION(:), ALLOCATABLE :: pb_phase_L, pb_phase_R
Antoine Cyril David Hoffmann
committed
! Functions
PUBLIC :: geometry_readinputs, geometry_outputinputs,&
eval_magnetic_geometry, set_ikx_zBC_map
Antoine Cyril David Hoffmann
committed
CONTAINS
SUBROUTINE geometry_readinputs
! Read the input parameters
IMPLICIT NONE
NAMELIST /GEOMETRY/ geom, q0, shear, eps,&

Antoine Cyril David Hoffmann
committed
kappa, s_kappa,delta, s_delta, zeta, s_zeta,& ! For miller
parallel_bc, shift_y
Antoine Cyril David Hoffmann
committed
READ(lu_in,geometry)
IF(shear .NE. 0._dp) SHEARED = .true.

Antoine Cyril David Hoffmann
committed
SELECT CASE(parallel_bc)
CASE ('dirichlet')
CASE ('periodic')
CASE ('shearless')
CASE ('disconnected')
CASE DEFAULT
stop 'Parallel BC not recognized'
END SELECT
IF(my_id .EQ. 0) print*, 'Parallel BC : ', parallel_bc
Antoine Cyril David Hoffmann
committed
END SUBROUTINE geometry_readinputs
subroutine eval_magnetic_geometry
Antoine Cyril David Hoffmann
committed
! evalute metrix, elementwo_third_kpmaxts, jacobian and gradient
implicit none
COMPLEX(dp), DIMENSION(izs:ize) :: integrant
real(dp) :: G1,G2,G3,Cx,Cy
Antoine Cyril David Hoffmann
committed
! Allocate arrays
CALL geometry_allocate_mem
IF( (Ny .EQ. 1) .AND. (Nz .EQ. 1)) THEN !1D perp linear run
IF( my_id .eq. 0 ) WRITE(*,*) '1D perpendicular geometry'
call eval_1D_geometry
ELSE
Antoine Cyril David Hoffmann
committed
SELECT CASE(geom)
CASE('s-alpha')

Antoine Cyril David Hoffmann
committed
IF( my_id .eq. 0 ) WRITE(*,*) 's-alpha geometry'
call eval_salpha_geometry
Antoine Cyril David Hoffmann
committed
CASE('Z-pinch')
IF( my_id .eq. 0 ) WRITE(*,*) 'Z-pinch geometry'
call eval_zpinch_geometry

Antoine Cyril David Hoffmann
committed
SHEARED = .FALSE.
shear = 0._dp
CASE('miller')
IF( my_id .eq. 0 ) WRITE(*,*) 'Miller geometry'
call set_miller_parameters(kappa,s_kappa,delta,s_delta,zeta,s_zeta)
call get_miller(eps,major_R,major_Z,q0,shear,alpha_MHD,edge_opt,&
C_y,C_xy,dpdx_pm_geom,gxx,gyy,gzz,gxy,gxz,gyz,&

Antoine Cyril David Hoffmann
committed
dBdx,dBdy,hatB,jacobian,dBdz,hatR,hatZ,dxdR,dxdZ,&
Antoine Cyril David Hoffmann
committed
CASE DEFAULT
STOP 'geometry not recognized!!'
Antoine Cyril David Hoffmann
committed
END SELECT
! Evaluate perpendicular wavenumber
! k_\perp^2 = g^{xx} k_x^2 + 2 g^{xy}k_x k_y + k_y^2 g^{yy}
! normalized to rhos_
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
DO iz = izgs,izge
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx = ikxs, ikxe
kx = kxarray(ikx)
! there is a factor 1/B from the normalization; important to match GENE

Antoine Cyril David Hoffmann
committed
! this factor comes from $b_a$ argument in the Bessel. Kperp is not used otherwise.
kparray(iky, ikx, iz, eo) = &
SQRT( gxx(iz,eo)*kx**2 + 2._dp*gxy(iz,eo)*kx*ky + gyy(iz,eo)*ky**2)/ hatB(iz,eo)
! Curvature operator (Frei et al. 2022 eq 2.15)
DO iz = izgs,izge
G1 = gxy(iz,eo)*gxy(iz,eo)-gxx(iz,eo)*gyy(iz,eo)
G2 = gxy(iz,eo)*gxz(iz,eo)-gxx(iz,eo)*gyz(iz,eo)
G3 = gyy(iz,eo)*gxz(iz,eo)-gxy(iz,eo)*gyz(iz,eo)

Antoine Cyril David Hoffmann
committed
! Here we divide by hatB because our equation is formulated with grad(lnB) terms (not gradB like in GENE)
Cx =-(dBdy(iz,eo) + G2/G1*dBdz(iz,eo))/hatB(iz,eo)
Cy = (dBdx(iz,eo) - G3/G1*dBdz(iz,eo))/hatB(iz,eo)
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx= ikxs, ikxe
kx = kxarray(ikx)

Antoine Cyril David Hoffmann
committed
Ckxky(iky, ikx, iz,eo) = (Cx*kx + Cy*ky)/C_xy
ENDDO
ENDDO
! coefficient in the front of parallel derivative

Antoine Cyril David Hoffmann
committed
gradz_coeff(iz,eo) = 1._dp /(jacobian(iz,eo)*hatB(iz,eo))
! Nonlinear term prefactor
! (according to my derivations, there should be a metric dependent factor in front of the Poisson bracket)
hatB_NL(iz,eo) = 1._dp !Jacobian(iz,eo)*(gxx(iz,eo)*gyy(iz,eo) - gxy(iz,eo)**2)/hatB(iz,eo)
ENDDO
Antoine Cyril David Hoffmann
committed
ENDDO
! set the mapping for parallel boundary conditions
CALL set_ikx_zBC_map
Antoine Cyril David Hoffmann
committed
two_third_kpmax = 2._dp/3._dp * MAXVAL(kparray)
!
! Compute the inverse z integrated Jacobian (useful for flux averaging)
integrant = Jacobian(izs:ize,0) ! Convert into complex array
CALL simpson_rule_z(integrant,iInt_Jacobian)
iInt_Jacobian = 1._dp/iInt_Jacobian ! reverse it
END SUBROUTINE eval_magnetic_geometry
!
!--------------------------------------------------------------------------------
!

Antoine Cyril David Hoffmann
committed
SUBROUTINE eval_salpha_geometry
! evaluate s-alpha geometry model
implicit none
REAL(dp) :: z
alpha_MHD = 0._dp
Antoine Cyril David Hoffmann
committed
parity: DO eo = 0,1
zloop: DO iz = izgs,izge
Antoine Cyril David Hoffmann
committed
z = zarray(iz,eo)
Antoine Cyril David Hoffmann
committed
gxx(iz,eo) = 1._dp
gxy(iz,eo) = shear*z - alpha_MHD*SIN(z)
gxz(iz,eo) = 0._dp
gyy(iz,eo) = 1._dp + (shear*z - alpha_MHD*SIN(z))**2
gyz(iz,eo) = 1._dp/eps

Antoine Cyril David Hoffmann
committed
gzz(iz,eo) = 1._dp/eps**2
dxdR(iz,eo)= COS(z)
dxdZ(iz,eo)= SIN(z)

Antoine Cyril David Hoffmann
committed
! Poloidal plane coordinates
Antoine Cyril David Hoffmann
committed
hatR(iz,eo) = 1._dp + eps*COS(z)
hatZ(iz,eo) = 1._dp + eps*SIN(z)
! toroidal coordinates
Rc (iz,eo) = hatR(iz,eo)
phic(iz,eo) = z
Zc (iz,eo) = hatZ(iz,eo)
! Relative strengh of modulus of B

Antoine Cyril David Hoffmann
committed
hatB(iz,eo) = 1._dp/(1._dp + eps*COS(z))
! Jacobian
Jacobian(iz,eo) = q0/hatB(iz,eo)
! Derivative of the magnetic field strenght

Antoine Cyril David Hoffmann
committed
dBdx(iz,eo) = -COS(z)*hatB(iz,eo) ! LB = 1
dBdy(iz,eo) = 0._dp
dBdz(iz,eo) = eps*SIN(z)*hatB(iz,eo)**2

Antoine Cyril David Hoffmann
committed
! Curvature factor
C_xy = 1._dp
Antoine Cyril David Hoffmann
committed
ENDDO parity

Antoine Cyril David Hoffmann
committed
END SUBROUTINE eval_salpha_geometry
!
!--------------------------------------------------------------------------------
!
REAL(dp) :: z
parity: DO eo = 0,1
zloop: DO iz = izgs,izge
z = zarray(iz,eo)
gxx(iz,eo) = 1._dp
gyy(iz,eo) = 1._dp ! 1/R but R is the normalization length
gyz(iz,eo) = 0._dp
gzz(iz,eo) = 1._dp
dxdR(iz,eo)= COS(z)
dxdZ(iz,eo)= SIN(z)
! Relative strengh of radius
hatR(iz,eo) = 1._dp ! R but R is the normalization length
! toroidal coordinates
Rc (iz,eo) = hatR(iz,eo)
Zc (iz,eo) = hatZ(iz,eo)
Jacobian(iz,eo) = 1._dp ! R but R is the normalization length
! Relative strengh of modulus of B
! Derivative of the magnetic field strenght

Antoine Cyril David Hoffmann
committed
dBdx(iz,eo) = -hatB(iz,eo) ! LB = 1
dBdy(iz,eo) = 0._dp
dBdz(iz,eo) = 0._dp ! Gene put a factor hatB or 1/hatR in this
Antoine Cyril David Hoffmann
committed
! Curvature factor
C_xy = 1._dp
Antoine Cyril David Hoffmann
committed
END SUBROUTINE eval_zpinch_geometry
!
!--------------------------------------------------------------------------------
!
subroutine eval_1D_geometry
! evaluate 1D perp geometry model
implicit none
REAL(dp) :: z, kx, ky
Antoine Cyril David Hoffmann
committed
parity: DO eo = 0,1
Antoine Cyril David Hoffmann
committed
z = zarray(iz,eo)
Antoine Cyril David Hoffmann
committed
gxx(iz,eo) = 1._dp
gxy(iz,eo) = 0._dp
gyy(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
hatR(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
Jacobian(iz,eo) = 1._dp
Antoine Cyril David Hoffmann
committed
hatB(iz,eo) = 1._dp
! Curvature operator
DO iky = ikys, ikye
ky = kyarray(iky)
DO ikx= ikxs, ikxe
kx = kxarray(ikx)
Antoine Cyril David Hoffmann
committed
Ckxky(ikx, iky, iz,eo) = -kx ! .. multiply by hatB to cancel the 1/ hatB factor in moments_eqs_rhs.f90 routine
ENDDO
! coefficient in the front of parallel derivative
Antoine Cyril David Hoffmann
committed
gradz_coeff(iz,eo) = 1._dp
ENDDO zloop
ENDDO parity
!
!--------------------------------------------------------------------------------
!
Antoine Cyril David Hoffmann
committed
SUBROUTINE set_ikx_zBC_map
IMPLICIT NONE
REAL :: shift

Antoine Cyril David Hoffmann
committed
ALLOCATE(ikx_zBC_L(ikys:ikye,ikxs:ikxe))
ALLOCATE(ikx_zBC_R(ikys:ikye,ikxs:ikxe))
ALLOCATE(pb_phase_L(ikys:ikye))
ALLOCATE(pb_phase_R(ikys:ikye))
!! No shear case (simple id mapping) or not at the end of the z domain

Antoine Cyril David Hoffmann
committed
!3 | 1 2 3 4 5 6 | ky = 3 dky
!2 ky | 1 2 3 4 5 6 | ky = 2 dky
!1 A | 1 2 3 4 5 6 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=free)
DO iky = ikys,ikye
DO ikx = ikxs,ikxe

Antoine Cyril David Hoffmann
committed
ikx_zBC_L(iky,ikx) = ikx ! connect to itself per default

Antoine Cyril David Hoffmann
committed
ikx_zBC_R(iky,ikx) = ikx
ENDDO

Antoine Cyril David Hoffmann
committed
pb_phase_L(iky) = 1._dp ! no phase change per default
pb_phase_R(iky) = 1._dp

Antoine Cyril David Hoffmann
committed
! Parallel boundary are not trivial for sheared case and if
! the user does not ask explicitly for shearless bc
IF(SHEARED .AND. (parallel_bc .NE. 'shearless')) THEN
!!!!!!!!!! LEFT PARALLEL BOUNDARY
! Modify connection map only at border of z (matters for MPI z-parallelization)
IF(contains_zmin) THEN ! Check if the process is at the start of the fluxtube

Antoine Cyril David Hoffmann
committed
DO iky = ikys,ikye

Antoine Cyril David Hoffmann
committed
! Formula for the shift due to shear after Npol turns
shift = 2._dp*PI*shear*kyarray(iky)*Npol

Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe

Antoine Cyril David Hoffmann
committed
! Usual formula for shifting indices using that dkx = 2pi*shear*dky/Nexc
ikx_zBC_L(iky,ikx) = ikx-(iky-1)*Nexc
! Check if it points out of the kx domain
! IF( (kxarray(ikx) - shift) .LT. kx_min ) THEN
IF( (ikx-(iky-1)*Nexc) .LT. 1 ) THEN ! outside of the frequ domain
SELECT CASE(parallel_bc)
CASE ('dirichlet')! connected to 0
ikx_zBC_L(iky,ikx) = -99
CASE ('periodic') !reroute it by cycling through modes
ikx_zBC_L(iky,ikx) = MODULO(ikx_zBC_L(iky,ikx)-1,Nkx)+1
END SELECT

Antoine Cyril David Hoffmann
committed
ENDIF
ENDDO

Antoine Cyril David Hoffmann
committed
! phase present in GENE from a shift of the x origin by Lx/2 (useless?)
! We also put the user defined shift in the y direction (see Volcokas et al. 2022)
pb_phase_L(iky) = (-1._dp)**(Nexc*(iky-1))*EXP(imagu*REAL(iky-1,dp)*2._dp*pi*shift_y)

Antoine Cyril David Hoffmann
committed
ENDDO
ENDIF

Antoine Cyril David Hoffmann
committed
! Option for disconnecting every modes, viz. connecting all boundary to 0
IF(parallel_bc .EQ. 'disconnected') ikx_zBC_L = -99
!!!!!!!!!! RIGHT PARALLEL BOUNDARY
IF(contains_zmax) THEN ! Check if the process is at the end of the flux-tube

Antoine Cyril David Hoffmann
committed
DO iky = ikys,ikye

Antoine Cyril David Hoffmann
committed
! Formula for the shift due to shear after Npol
shift = 2._dp*PI*shear*kyarray(iky)*Npol

Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe

Antoine Cyril David Hoffmann
committed
! Usual formula for shifting indices
ikx_zBC_R(iky,ikx) = ikx+(iky-1)*Nexc
! Check if it points out of the kx domain
! IF( (kxarray(ikx) + shift) .GT. kx_max ) THEN ! outside of the frequ domain
IF( (ikx+(iky-1)*Nexc) .GT. Nkx ) THEN ! outside of the frequ domain
SELECT CASE(parallel_bc)
CASE ('dirichlet') ! connected to 0
ikx_zBC_R(iky,ikx) = -99
CASE ('periodic') !reroute it by cycling through modes
write(*,*) 'check',ikx,iky, kxarray(ikx) + shift, '>', kx_max
ikx_zBC_R(iky,ikx) = MODULO(ikx_zBC_R(iky,ikx)-1,Nkx)+1
END SELECT

Antoine Cyril David Hoffmann
committed
ENDIF
ENDDO

Antoine Cyril David Hoffmann
committed
! phase present in GENE from a shift ofthe x origin by Lx/2 (useless?)
! We also put the user defined shift in the y direction (see Volcokas et al. 2022)
pb_phase_R(iky) = (-1._dp)**(Nexc*(iky-1))*EXP(-imagu*REAL(iky-1,dp)*2._dp*pi*shift_y)

Antoine Cyril David Hoffmann
committed
ENDDO
ENDIF

Antoine Cyril David Hoffmann
committed
! Option for disconnecting every modes, viz. connecting all boundary to 0
IF(parallel_bc .EQ. 'disconnected') ikx_zBC_R = -99
ENDIF
! write(*,*) kxarray
! write(*,*) kyarray
! write(*,*) 'ikx_zBC_L :-----------'
! DO iky = ikys,ikye
! print*, ikx_zBC_L(iky,:)
! enddo

Antoine Cyril David Hoffmann
committed
! print*, pb_phase_L

Antoine Cyril David Hoffmann
committed
! write(*,*) 'ikx_zBC_R :-----------'
! DO iky = ikys,ikye
! print*, ikx_zBC_R(iky,:)
! enddo

Antoine Cyril David Hoffmann
committed
! print*, pb_phase_R
! print*, shift_y

Antoine Cyril David Hoffmann
committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
! stop
!!!!!!! Example of maps ('x' means connected to 0 value, in the table it is -99)
! dirichlet connection map BC of the RIGHT boundary (z=pi*Npol-dz)
!3 | 4 x x x 2 3 | ky = 3 dky
!2 ky | 3 4 x x 1 2 | ky = 2 dky
!1 A | 2 3 4 x 6 1 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
! periodic connection map BC of the LEFT boundary (z=-pi*Npol)
!3 | 4 5 6 1 2 3 | ky = 3 dky
!2 ky | 5 6 1 2 3 4 | ky = 2 dky
!1 A | 6 1 2 3 4 5 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
! shearless connection map BC of the LEFT/RIGHT boundary (z=+/-pi*Npol)
!3 | 1 2 3 4 5 6 | ky = 3 dky
!2 ky | 1 2 3 4 5 6 | ky = 2 dky
!1 A | 1 2 3 4 5 6 | ky = 1 dky
!0 | -> kx | 1____2____3____4____5____6 | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
! disconnected connection map BC of the LEFT/RIGHT boundary (z=+/-pi*Npol)
!3 | x x x x x x | ky = 3 dky
!2 ky | x x x x x x | ky = 2 dky
!1 A | x x x x x x | ky = 1 dky
!0 | -> kx | x____x____x____x____x____x | ky = 0 dky
!(e.g.) kx = 0 0.1 0.2 0.3 -0.2 -0.1 (dkx=2pi*shear*npol*dky)
END SUBROUTINE set_ikx_zBC_map
!
!--------------------------------------------------------------------------------
!
Antoine Cyril David Hoffmann
committed
SUBROUTINE geometry_allocate_mem
! Curvature and geometry
CALL allocate_array( Ckxky, ikys,ikye, ikxs,ikxe,izgs,izge,0,1)
Antoine Cyril David Hoffmann
committed
CALL allocate_array( Jacobian,izgs,izge, 0,1)
CALL allocate_array( gxx,izgs,izge, 0,1)
CALL allocate_array( gxy,izgs,izge, 0,1)
CALL allocate_array( gxz,izgs,izge, 0,1)
CALL allocate_array( gyy,izgs,izge, 0,1)
CALL allocate_array( gyz,izgs,izge, 0,1)
CALL allocate_array( gzz,izgs,izge, 0,1)

Antoine Cyril David Hoffmann
committed
CALL allocate_array( dBdx,izgs,izge, 0,1)
CALL allocate_array( dBdy,izgs,izge, 0,1)
CALL allocate_array( dBdz,izgs,izge, 0,1)
Antoine Cyril David Hoffmann
committed
CALL allocate_array( hatB,izgs,izge, 0,1)
CALL allocate_array( hatB_NL,izgs,izge, 0,1)
Antoine Cyril David Hoffmann
committed
CALL allocate_array( hatR,izgs,izge, 0,1)
CALL allocate_array( hatZ,izgs,izge, 0,1)
CALL allocate_array( Rc,izgs,izge, 0,1)
CALL allocate_array( phic,izgs,izge, 0,1)
CALL allocate_array( Zc,izgs,izge, 0,1)
CALL allocate_array( dxdR,izgs,izge, 0,1)
CALL allocate_array( dxdZ,izgs,izge, 0,1)
call allocate_array(gradz_coeff,izgs,izge, 0,1)
CALL allocate_array( kparray, ikys,ikye, ikxs,ikxe,izgs,izge,0,1)
Antoine Cyril David Hoffmann
committed
END SUBROUTINE geometry_allocate_mem
SUBROUTINE geometry_outputinputs(fidres, str)
! Write the input parameters to the results_xx.h5 file
USE futils, ONLY: attach
USE prec_const
IMPLICIT NONE
INTEGER, INTENT(in) :: fidres
CHARACTER(len=256), INTENT(in) :: str
CALL attach(fidres, TRIM(str),"geometry", geom)
CALL attach(fidres, TRIM(str), "q0", q0)
CALL attach(fidres, TRIM(str), "shear", shear)
CALL attach(fidres, TRIM(str), "eps", eps)
END SUBROUTINE geometry_outputinputs
end module geometry