Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Gyacomo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Cyril David Hoffmann
Gyacomo
Commits
c61f771e
Commit
c61f771e
authored
1 year ago
by
Antoine Cyril David Hoffmann
Browse files
Options
Downloads
Patches
Plain Diff
correction of the parameters
parent
f3d91b93
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wk/parameters/lin_JET_rho97.m
+71
-39
71 additions, 39 deletions
wk/parameters/lin_JET_rho97.m
with
71 additions
and
39 deletions
wk/parameters/lin_JET_rho97.m
+
71
−
39
View file @
c61f771e
% Parameters found in Parisi et al. 2020
%% Parameters found in Parisi et al. 2020
% Jet shot 92174
% Jet shot 92174 parameters
BT0
=
1.9
;
%[T] Toroidal field @ 2.96m
Ip
=
1.4
;
%[MA] Plasma current @ 2.96m
PNBI
=
17.4
;
%[MW] NBI power
rhoi
=
0.27
;
%[cm] Ion gyroradius
R0
=
2.86
;
%[m] Major radius
a
=
0.91
;
%[m] F-T minor radius
Rc
=
2.91
;
%[m] ??
rc
=
0.89
;
%[m] ??
m_e
=
5.49e-4
;
%[amu] electron mass
m_i
=
2.014
;
%[amu] deuterium mass
% Dimless flux-tube parameters
nuee
=
0.83
;
%[vti/a] e-e collision frequ.
wTe
=
42
;
%[a/L] e-temp. gradient length
wTi
=
11
;
%[a/L] i-temp. gradient length
wNe
=
10
;
%[a/L] dens. gradient length
tau
=
1
/
0.56
;
%Ti/Te i-e temperature ratio
gE
=
0.56
;
%[vti/a] ExB shearing rate
roa
=
0.9743
;
% r/a Flux surface position
beta
=
0.0031
;
% [8pi*ptot/B^2] with B = 1.99T
% Normalization
% v0 = vth_i = sqrt(2*Ti/mi)
% rho0 = rho_i = vti/omegai
% Conversion factors from GYAC to paper results
freq_conv
=
a
/
R0
*
sqrt
(
tau
/
2
);
% from R/c_s to a/vti
wave_conv
=
sqrt
(
2
/
tau
);
% from rho_i to rho_s
grad_conv
=
a
/
R0
;
% from R/LT to a/LT
%% Set simulation parameters
%% Set simulation parameters
SIMID
=
'lin_JET_rho97'
;
% Name of the simulation
SIMID
=
'lin_JET_rho97'
;
% Name of the simulation
%% Set up physical parameters
%% Set up physical parameters
CLUSTER
.
TIME
=
'99:00:00'
;
% Allocation time hh:mm:ss
NU
=
0.1
;
% Not the true value
NU
=
0.1
;
% Not the true value
TAU
=
1
/
0.56
;
% e/i
temperature ratio
TAU
=
tau
;
% i/e
temperature ratio
K_Ne
=
10
;
% ele Density '''
K_Ne
=
wNe
/
grad_conv
;
% ele Density '''
K_Te
=
42
;
% ele Temperature '''
K_Te
=
wTe
/
grad_conv
;
% ele Temperature '''
K_Ni
=
10
;
% ion Density gradient drive
K_Ni
=
wNe
/
grad_conv
;
% ion Density gradient drive
K_Ti
=
11
;
% ion Temperature '''
K_Ti
=
wTi
/
grad_conv
;
% ion Temperature '''
SIGMA_E
=
0.0233380
;
% mass ratio sqrt(m_
a
/m_i) (
correct
= 0.0233380)
SIGMA_E
=
sqrt
(
m_e
/
m_i
);
% mass ratio sqrt(m_
e
/m_i) (
e-H
= 0.0233380)
NA
=
2
;
% number of kinetic species
NA
=
2
;
% number of kinetic species
ADIAB_E
=
(
NA
==
1
);
% adiabatic electron model
BETA
=
beta
;
% electron plasma beta
BETA
=
0.0031
;
% electron plasma beta
MHD_PD
=
1
;
MHD_PD
=
0
;
CO
=
'DG'
;
% Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO
=
1
;
% Gyrokinetic operator
ABCO
=
1
;
% INTERSPECIES collisions
COLL_KCUT
=
100
;
% Cutoff for collision operator
%% GEOMETRY
%% GEOMETRY
% GEOMETRY= 's-alpha';
% GEOMETRY= 's-alpha';
GEOMETRY
=
'miller'
;
GEOMETRY
=
'miller'
;
EPS
=
0.9753
*
0.91
/
2.91
;
% inverse aspect ratio
EPS
=
a
/
R0
;
% inverse aspect ratio
Q0
=
5.10
;
% safety factor
Q0
=
5.100
;
% safety factor
SHEAR
=
3.36
;
% magnetic shear
SHEAR
=
3.360
;
% magnetic shear
KAPPA
=
1.55
;
% elongation
KAPPA
=
1.550
;
% elongation
S_KAPPA
=
0.95
;
S_KAPPA
=
0.949
;
DELTA
=
0.26
;
% triangularity
DELTA
=
0.263
;
% triangularity
S_DELTA
=
0.74
;
S_DELTA
=
0.737
;
ZETA
=
0
;
% squareness
S_ZETA
=
0
;
PARALLEL_BC
=
'dirichlet'
;
% Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y
=
0.0
;
% Shift in the periodic BC in z
NPOL
=
1
;
% Number of poloidal turns
PB_PHASE
=
0
;
%% Set up grid parameters
%% Set up grid parameters
P
=
4
;
P
=
4
;
J
=
P
/
2
;
%P/2;
J
=
P
/
2
;
%P/2;
PMAX
=
P
;
% Hermite basis size
PMAX
=
P
;
% Hermite basis size
JMAX
=
J
;
% Laguerre basis size
JMAX
=
J
;
% Laguerre basis size
NX
=
8
;
% real space x-gridpoints
NX
=
16
;
% real space x-gridpoints
NY
=
8
;
% real space y-gridpoints
NY
=
2
;
% real space y-gridpoints
LX
=
2
*
pi
/
0.1
;
% Size of the squared frequency domain in x direction
LX
=
2
*
pi
/
0.1
;
% Size of the squared frequency domain in x direction
LY
=
2
*
pi
/
0.2
;
% Size of the squared frequency domain in y direction
LY
=
2
*
pi
/
0.2
;
% Size of the squared frequency domain in y direction
NZ
=
32
;
% number of perpendicular planes (parallel grid)
NZ
=
32
;
% number of perpendicular planes (parallel grid)
...
@@ -55,11 +78,15 @@ DTSAVE3D = 0.5; % Sampling time for 3D arrays
...
@@ -55,11 +78,15 @@ DTSAVE3D = 0.5; % Sampling time for 3D arrays
DTSAVE5D
=
100
;
% Sampling time for 5D arrays
DTSAVE5D
=
100
;
% Sampling time for 5D arrays
JOB2LOAD
=
-
1
;
% Start a new simulation serie
JOB2LOAD
=
-
1
;
% Start a new simulation serie
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% UNUSED PARAMETERS
% These parameters are usually not to play with in linear runs
%% OPTIONS
%% OPTIONS
CLUSTER
.
TIME
=
'99:00:00'
;
% Allocation time hh:mm:ss
LINEARITY
=
'linear'
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
LINEARITY
=
'linear'
;
% activate non-linearity (is cancelled if KXEQ0 = 1)
CO
=
'DG'
;
% Collision operator (LB:L.Bernstein, DG:Dougherty, SG:Sugama, LR: Lorentz, LD: Landau)
GKCO
=
1
;
% Gyrokinetic operator
ABCO
=
1
;
% INTERSPECIES collisions
INIT_ZF
=
0
;
% Initialize zero-field quantities
INIT_ZF
=
0
;
% Initialize zero-field quantities
HRCY_CLOS
=
'truncation'
;
% Closure model for higher order moments
HRCY_CLOS
=
'truncation'
;
% Closure model for higher order moments
DMAX
=
-
1
;
DMAX
=
-
1
;
...
@@ -67,6 +94,8 @@ NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments
...
@@ -67,6 +94,8 @@ NLIN_CLOS = 'truncation'; % Nonlinear closure model for higher order moments
NMAX
=
0
;
NMAX
=
0
;
KERN
=
0
;
% Kernel model (0 : GK)
KERN
=
0
;
% Kernel model (0 : GK)
INIT_OPT
=
'phi'
;
% Start simulation with a noisy mom00/phi/allmom
INIT_OPT
=
'phi'
;
% Start simulation with a noisy mom00/phi/allmom
NOISE0
=
1.0e-5
;
% Initial noise amplitude
BCKGD0
=
0.0e-5
;
% Initial background
NUMERICAL_SCHEME
=
'RK4'
;
% Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)
NUMERICAL_SCHEME
=
'RK4'
;
% Numerical integration scheme (RK2,SSPx_RK2,RK3,SSP_RK3,SSPx_RK3,IMEX_SSP2,ARK2,RK4,DOPRI5)
%% OUTPUTS
%% OUTPUTS
...
@@ -80,22 +109,25 @@ W_TEMP = 1; % Output flag for temperature
...
@@ -80,22 +109,25 @@ W_TEMP = 1; % Output flag for temperature
W_NAPJ
=
1
;
% Output flag for nalphaparallel (parallel momentum of species alpha)
W_NAPJ
=
1
;
% Output flag for nalphaparallel (parallel momentum of species alpha)
W_SAPJ
=
0
;
% Output flag for saparallel (parallel current of species alpha)
W_SAPJ
=
0
;
% Output flag for saparallel (parallel current of species alpha)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Unused geometry
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ZETA
=
0
;
% squareness
%% UNUSED PARAMETERS
S_ZETA
=
0
;
% These parameters are usually not to play with in linear runs
PARALLEL_BC
=
'dirichlet'
;
% Boundary condition for parallel direction ('dirichlet','periodic','shearless','disconnected')
SHIFT_Y
=
0.0
;
% Shift in the periodic BC in z
NPOL
=
1
;
% Number of poloidal turns
PB_PHASE
=
0
;
%% Diffusions
MU
=
0.0
;
% Hyperdiffusivity coefficient
MU
=
0.0
;
% Hyperdiffusivity coefficient
MU_X
=
MU
;
% Hyperdiffusivity coefficient in x direction
MU_X
=
MU
;
% Hyperdiffusivity coefficient in x direction
MU_Y
=
MU
;
% Hyperdiffusivity coefficient in y direction
MU_Y
=
MU
;
% Hyperdiffusivity coefficient in y direction
N_HD
=
4
;
% Degree of spatial-hyperdiffusivity
N_HD
=
4
;
% Degree of spatial-hyperdiffusivity
MU_Z
=
2
.0
;
% Hyperdiffusivity coefficient in z direction
MU_Z
=
5
.0
;
% Hyperdiffusivity coefficient in z direction
HYP_V
=
'hypcoll'
;
% Kinetic-hyperdiffusivity model
HYP_V
=
'hypcoll'
;
% Kinetic-hyperdiffusivity model
MU_P
=
0.0
;
% Hyperdiffusivity coefficient for Hermite
MU_P
=
0.0
;
% Hyperdiffusivity coefficient for Hermite
MU_J
=
0.0
;
% Hyperdiffusivity coefficient for Laguerre
MU_J
=
0.0
;
% Hyperdiffusivity coefficient for Laguerre
LAMBDAD
=
0.0
;
% Lambda Debye
LAMBDAD
=
0.0
;
% Lambda Debye
NOISE0
=
1.0e-5
;
% Initial noise amplitude
BCKGD0
=
0.0e-5
;
% Initial background
k_gB
=
1.0
;
% Magnetic gradient strength
k_gB
=
1.0
;
% Magnetic gradient strength
k_cB
=
1.0
;
% Magnetic curvature strength
k_cB
=
1.0
;
% Magnetic curvature strength
COLL_KCUT
=
1
;
% Cutoff for collision operator
ADIAB_I
=
0
;
% adiabatic ion model
ADIAB_I
=
0
;
% adiabatic ion model
ADIAB_E
=
(
NA
==
1
);
% adiabatic electron model
\ No newline at end of file
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment