Skip to content
Snippets Groups Projects
Commit b5b141eb authored by Sankalp Gambhir's avatar Sankalp Gambhir Committed by Viktor Kunčak
Browse files

added subset definition axiom

parent d0a96d1a
No related branches found
No related tags found
3 merge requests!54Front integration,!53Front integration,!52Front integration
This commit is part of merge request !53. Comments created here will be created in the context of that merge request.
...@@ -17,6 +17,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions { ...@@ -17,6 +17,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions {
final val extensionalityAxiom: Formula = forall(x, forall(y, forall(z, in(z, x) <=> in(z, y)) <=> (x === y))) final val extensionalityAxiom: Formula = forall(x, forall(y, forall(z, in(z, x) <=> in(z, y)) <=> (x === y)))
final val pairAxiom: Formula = forall(x, forall(y, forall(z, in(z, pair(x, y)) <=> (x === z) \/ (y === z)))) final val pairAxiom: Formula = forall(x, forall(y, forall(z, in(z, pair(x, y)) <=> (x === z) \/ (y === z))))
final val unionAxiom: Formula = forall(x, forall(z, in(x, union(z)) <=> exists(y, in(x, y) /\ in(y, z)))) final val unionAxiom: Formula = forall(x, forall(z, in(x, union(z)) <=> exists(y, in(x, y) /\ in(y, z))))
final val subsetAxiom: Formula = forall(x, forall(y, subset(x, y) <=> forall(z, (in(z, x) ==> in(z, y)))))
final val powerAxiom: Formula = forall(x, forall(y, in(x, powerSet(y)) <=> subset(x, y))) final val powerAxiom: Formula = forall(x, forall(y, in(x, powerSet(y)) <=> subset(x, y)))
final val foundationAxiom: Formula = forall(x, !(x === emptySet()) ==> exists(y, in(y, x) /\ forall(z, in(z, x) ==> !in(z, y)))) final val foundationAxiom: Formula = forall(x, !(x === emptySet()) ==> exists(y, in(y, x) /\ forall(z, in(z, x) ==> !in(z, y))))
...@@ -27,6 +28,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions { ...@@ -27,6 +28,7 @@ private[settheory] trait SetTheoryZAxioms extends SetTheoryDefinitions {
("extensionalityAxiom", extensionalityAxiom), ("extensionalityAxiom", extensionalityAxiom),
("pairAxiom", pairAxiom), ("pairAxiom", pairAxiom),
("unionAxiom", unionAxiom), ("unionAxiom", unionAxiom),
("subsetAxiom", subsetAxiom),
("powerAxiom", powerAxiom), ("powerAxiom", powerAxiom),
("foundationAxiom", foundationAxiom), ("foundationAxiom", foundationAxiom),
("comprehensionSchema", comprehensionSchema) ("comprehensionSchema", comprehensionSchema)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment