Newer
Older
function [ids_equilibrium,ids_equilibrium_description,varargout] = tcv_get_ids_equilibrium(shot,ids_equil_empty, gdat_params,varargin);
% [ids_equilibrium,ids_equilibrium_description,varargout] = tcv_get_ids_equilibrium(shot,ids_equil_empty,varargin);
% gdat_params: gdat_data.gdat_params to get all params passed from original call, in particular error_bar options
%
[ids_equilibrium, params_equilibrium] = tcv_ids_headpart(shot,ids_equil_empty,'equilibrium',varargin{:});
% As a general rule, for a new substructure under the main ids, construct a local structure like:
% "global_quantities" with subfields being the relevant data to get and a local structure:
% "global_quantities_desc" which contains the same subfields themselves containing the gdat string aftre shot used
%
% vacuum_toroidal_field and time, using homogeneous
%
%% liuqe.m at this stage is missing correction 0.996, so use std source by time of default liuqe to make sure
bb = gdat(params_equilibrium.shot,'b0','source','liuqe','machine',gdat_params.machine,'liuqe',gdat_params.liuqe); % to get liuqe time array
vacuum_toroidal_field.b0=gdat(params_equilibrium.shot,'b0','machine',gdat_params.machine);
vacuum_toroidal_field.b0.data = interp1(vacuum_toroidal_field.b0.t,vacuum_toroidal_field.b0.data,bb.t);
vacuum_toroidal_field.b0.t = bb.t;
vacuum_toroidal_field.b0.dim = {vacuum_toroidal_field.b0.t};
vacuum_toroidal_field_desc.b0 = ['''b0'',''timing source'',''liuqe=' num2str(gdat_params.liuqe) ''''];
vacuum_toroidal_field_desc.r0 = '.r0 subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.vacuum_toroidal_field.r0 = vacuum_toroidal_field.b0.r0;
ids_equilibrium.vacuum_toroidal_field.b0.data = vacuum_toroidal_field.b0.data;
ids_equilibrium_description.vacuum_toroidal_field = vacuum_toroidal_field_desc;
ids_equilibrium.time = vacuum_toroidal_field.b0.t;
ids_equilibrium_description.time = '.t subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.time_slice(1:numel(ids_equilibrium.time)) = ids_equilibrium.time_slice(1);
% load time array data to copy to time_slices
% global_quantities data into local global_quantities.* structure with correct end names and global_quantities_desc.* with description. Use temp.* and temp_desc.* structures for temporary data
% brute force solution load all eqdsks
% $$$ for it=1:numel(ids_equilibrium.time)
% $$$ ids_equilibrium.time(it)
% $$$ temp.eqdsks{it}=gdat(params_equilibrium.shot,'eqdsk','time',ids_equilibrium.time(it),'write',0,'machine',gdat_params.machine);
% $$$ end
% $$$ temp_desc.eqdsks{1} = '''eqdsk'',''time'',ids_equilibrium.time(it)';
global_quantities.area = gdat(params_equilibrium.shot,'area_edge','machine',gdat_params.machine);
global_quantities_desc.area = 'area_edge';
global_quantities.beta_normal = gdat(params_equilibrium.shot,'betan','machine',gdat_params.machine);
global_quantities_desc.beta_normal = 'betan';
global_quantities.beta_pol = gdat(params_equilibrium.shot,'betap','machine',gdat_params.machine);
global_quantities_desc.beta_pol = 'betap';
global_quantities.beta_tor = gdat(params_equilibrium.shot,'beta','machine',gdat_params.machine);
global_quantities_desc.beta_tor = 'beta';
global_quantities.energy_mhd = gdat(params_equilibrium.shot,'w_mhd','machine',gdat_params.machine);
global_quantities_desc.energy_mhd = 'w_mhd';
global_quantities.ip = gdat(params_equilibrium.shot,'ip','machine',gdat_params.machine);
global_quantities_desc.ip = 'ip';
% length_pol = gdat(params_equilibrium.shot,'length_pol','machine',gdat_params.machine); % to be added
global_quantities.li_3 = gdat(params_equilibrium.shot,'li','machine',gdat_params.machine);
global_quantities_desc.li_3 = 'li';
temp.r_magnetic_axis = gdat(params_equilibrium.shot,'r_axis','machine',gdat_params.machine);
temp_desc.r_magnetic_axis = 'r_axis';
temp.z_magnetic_axis = gdat(params_equilibrium.shot,'z_axis','machine',gdat_params.machine);
temp_desc.z_magnetic_axis = 'z_axis';
temp.psi_axis = gdat(params_equilibrium.shot,'psi_axis','machine',gdat_params.machine); % needs to add psi_edge sincepsi_axis liuqe assuming 0 dege value
temp_desc.psi_axis = 'psi_axis';
global_quantities.psi_boundary = gdat(params_equilibrium.shot,'psi_edge','machine',gdat_params.machine);
global_quantities_desc.psi_boundary = 'psi_edge';
global_quantities.q_95 = gdat(params_equilibrium.shot,'q95','machine',gdat_params.machine);
global_quantities_desc.q_95 = 'q95';
global_quantities.q_axis = gdat(params_equilibrium.shot,'q0','machine',gdat_params.machine); % will be checked with q_rho?
global_quantities_desc.q_axis = 'q0';
temp.q_rho = gdat(params_equilibrium.shot,'q_rho','machine',gdat_params.machine);
temp_desc.q_rho = 'q_rho';
% surface = gdat(params_equilibrium.shot,'surface','machine',gdat_params.machine); % to be added
global_quantities.volume = gdat(params_equilibrium.shot,'volume','machine',gdat_params.machine);
global_quantities_desc.volume = 'volume';
global_quantities.w_mhd = gdat(params_equilibrium.shot,'w_mhd','machine',gdat_params.machine);
global_quantities_desc.w_mhd = 'w_mhd';
global_quantities_fieldnames = fieldnames(global_quantities);
special_fields = {'magnetic_axis', 'psi_axis', 'q_min'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(global_quantities_fieldnames)
if ~any(strcmp(global_quantities_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}))
ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}) = ...
global_quantities.(global_quantities_fieldnames{i}).data(it);
else
special_fields{end+1} = global_quantities_fieldnames{i};
end
end
end
end
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r = temp.r_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.z = temp.z_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.psi_axis = temp.psi_axis.data(it) + ...
ids_equilibrium.time_slice{it}.global_quantities.psi_boundary;
[zz,izz]=min(temp.q_rho.data(:,it));
ids_equilibrium.time_slice{it}.global_quantities.q_min.value = zz;
ids_equilibrium.time_slice{it}.global_quantities.q_min.rho_tor_norm = temp.q_rho.grids_1d.rhotornorm(izz);
end
% for boundary in addition to lcfs
% active_limiter_point = gdat(params_equilibrium.shot,'active_limiter_point','machine',gdat_params.machine);
boundary.elongation = gdat(params_equilibrium.shot,'kappa','machine',gdat_params.machine);
boundary_desc.elongation = 'kappa';
% elongation_lower = gdat(params_equilibrium.shot,'elongation_lower','machine',gdat_params.machine);
% elongation_upper = gdat(params_equilibrium.shot,'elongation_upper','machine',gdat_params.machine);
boundary.minor_radius = gdat(params_equilibrium.shot,'a_minor','machine',gdat_params.machine);
boundary_desc.minor_radius = 'a_minor';
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner','machine',gdat_params.machine);
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer','machine',gdat_params.machine);
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner','machine',gdat_params.machine);
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer','machine',gdat_params.machine);
% strike_point = gdat(params_equilibrium.shot,'strike_point','machine',gdat_params.machine);
boundary.triangularity = gdat(params_equilibrium.shot,'delta','machine',gdat_params.machine);
boundary_desc.triangularity = 'delta';
boundary.triangularity_lower = gdat(params_equilibrium.shot,'delta_bottom','machine',gdat_params.machine);
boundary_desc.triangularity_lower = 'delta_bottom';
boundary.triangularity_upper = gdat(params_equilibrium.shot,'delta_top','machine',gdat_params.machine);
boundary_desc.triangularity_upper = 'delta_top';
temp.n_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''n_xpts'''',''''liuqe.m'''')','machine',gdat_params.machine);
temp_desc.n_x_point = '''tcv_eq(''''n_xpts'''',''''liuqe.m'''')''';
temp.r_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''r_xpts'''',''''liuqe.m'''')','machine',gdat_params.machine);
temp_desc.r_x_point = '''tcv_eq(''''r_xpts'''',''''liuqe.m'''')''';
temp.z_x_point = gdat(params_equilibrium.shot,'tcv_eq(''''z_xpts'''',''''liuqe.m'''')','machine',gdat_params.machine);
temp_desc.z_x_point = '''tcv_eq(''''z_xpts'''',''''liuqe.m'''')''';
temp.rgeom = gdat(params_equilibrium.shot,'rgeom','machine',gdat_params.machine);
temp_desc.rgeom = 'rgeom';
temp.zgeom = gdat(params_equilibrium.shot,'zgeom','machine',gdat_params.machine);
temp_desc.zgeom = 'zgeom';
temp.r_lcfs = gdat(params_equilibrium.shot,'r_contour_edge','machine',gdat_params.machine);
temp_desc.r_lcfs = 'r_contour_edge';
temp.z_lcfs = gdat(params_equilibrium.shot,'z_contour_edge','machine',gdat_params.machine);
temp_desc.z_lcfs = 'z_contour_edge';
boundary_fieldnames = fieldnames(boundary);
special_fields = {'lcfs', 'geometric_axis', 'x_point'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(boundary_fieldnames)
if ~any(strcmp(boundary_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}))
ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}) = ...
boundary.(boundary_fieldnames{i}).data(it);
else
special_fields{end+1} = boundary_fieldnames{i};
end
end
end
end
% special cases
ids_equilibrium.time_slice{it}.boundary.outline.r = temp.r_lcfs.data(:,it);
ids_equilibrium.time_slice{it}.boundary.outline.z = temp.z_lcfs.data(:,it);
ids_equilibrium.time_slice{it}.boundary.lcfs.r = ids_equilibrium.time_slice{it}.boundary.outline.r;
ids_equilibrium.time_slice{it}.boundary.lcfs.z = ids_equilibrium.time_slice{it}.boundary.outline.z;
ids_equilibrium.time_slice{it}.boundary.geometric_axis.r = temp.rgeom.data(it);
ids_equilibrium.time_slice{it}.boundary.geometric_axis.z = temp.zgeom.data(it);
if temp.n_x_point.data(it) > 0
ids_equilibrium.time_slice{it}.boundary.x_point(1:temp.n_x_point.data(it)) = ids_equilibrium.time_slice{it}.boundary.x_point(1);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.r = temp.r_x_point.data(i,it);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.z = temp.z_x_point.data(i,it);
end
else
ids_equilibrium.time_slice{it}.boundary.x_point = {};
end
end
%
%% profiles_1d (cannot use eqdsk since not same radial mesh)
%
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
% area = gdat(params_equilibrium.shot,'area','machine',gdat_params.machine);
% b_average = gdat(params_equilibrium.shot,'b_average','machine',gdat_params.machine);
% beta_pol = gdat(params_equilibrium.shot,'beta_pol','machine',gdat_params.machine);
% b_field_average = gdat(params_equilibrium.shot,'b_field_average','machine',gdat_params.machine);
% b_field_max = gdat(params_equilibrium.shot,'b_field_max','machine',gdat_params.machine);
% b_field_min = gdat(params_equilibrium.shot,'b_field_min','machine',gdat_params.machine);
% b_max = gdat(params_equilibrium.shot,'b_max','machine',gdat_params.machine);
% b_min = gdat(params_equilibrium.shot,'b_min','machine',gdat_params.machine);
% darea_dpsi = gdat(params_equilibrium.shot,'darea_dpsi','machine',gdat_params.machine);
% darea_drho_tor = gdat(params_equilibrium.shot,'darea_drho_tor','machine',gdat_params.machine);
profiles_1d.dpressure_dpsi = gdat(params_equilibrium.shot,'pprime','machine',gdat_params.machine);
% dpsi_drho_tor = gdat(params_equilibrium.shot,'dpsi_drho_tor','machine',gdat_params.machine);
% dvolume_dpsi = gdat(params_equilibrium.shot,'dvolume_dpsi','machine',gdat_params.machine);
% dvolume_drho_tor = gdat(params_equilibrium.shot,'dvolume_drho_tor','machine',gdat_params.machine);
% elongation = gdat(params_equilibrium.shot,'elongation','machine',gdat_params.machine);
profiles_1d.f_df_dpsi = gdat(params_equilibrium.shot,'ttprime','machine',gdat_params.machine);
profiles_1d.f = gdat(params_equilibrium.shot,'rbphi_rho','machine',gdat_params.machine);
profiles_1d.f.data = 0.996 * profiles_1d.f.data;
profiles_1d.f_df_dpsi.data = 0.996.^2 .* profiles_1d.f_df_dpsi.data;
% geometric_axis = gdat(params_equilibrium.shot,'geometric_axis','machine',gdat_params.machine);
% gm1 = gdat(params_equilibrium.shot,'gm1','machine',gdat_params.machine);
% gm2 = gdat(params_equilibrium.shot,'gm2','machine',gdat_params.machine);
% gm3 = gdat(params_equilibrium.shot,'gm3','machine',gdat_params.machine);
% gm4 = gdat(params_equilibrium.shot,'gm4','machine',gdat_params.machine);
% gm5 = gdat(params_equilibrium.shot,'gm5','machine',gdat_params.machine);
% gm6 = gdat(params_equilibrium.shot,'gm6','machine',gdat_params.machine);
% gm7 = gdat(params_equilibrium.shot,'gm7','machine',gdat_params.machine);
% gm8 = gdat(params_equilibrium.shot,'gm8','machine',gdat_params.machine);
% gm9 = gdat(params_equilibrium.shot,'gm9','machine',gdat_params.machine);
% j_parallel = gdat(params_equilibrium.shot,'j_parallel','machine',gdat_params.machine);
% j_tor = gdat(params_equilibrium.shot,'j_tor','machine',gdat_params.machine);
% magnetic_shear = gdat(params_equilibrium.shot,'magnetic_shear','machine',gdat_params.machine);
% mass_density = gdat(params_equilibrium.shot,'mass_density','machine',gdat_params.machine);
profiles_1d.phi = gdat(params_equilibrium.shot,'phi_tor','machine',gdat_params.machine);
profiles_1d.phi.data = 0.996 * profiles_1d.phi.data;
profiles_1d.pressure = gdat(params_equilibrium.shot,'pressure','machine',gdat_params.machine);
% psi = gdat(params_equilibrium.shot,'psi_rho','machine',gdat_params.machine); % (could take from .x of any like rhotor and psi_axis, psi_edge from global_quantities)
profiles_1d.q = gdat(params_equilibrium.shot,'q_rho','machine',gdat_params.machine);
profiles_1d.rho_tor = gdat(params_equilibrium.shot,'rhotor','machine',gdat_params.machine);
%rho_tor_norm = gdat(params_equilibrium.shot,'rhotor_norm','machine',gdat_params.machine); % from rho_tor
profiles_1d.rho_volume_norm = gdat(params_equilibrium.shot,'rhovol','machine',gdat_params.machine);
% r_inboard = gdat(params_equilibrium.shot,'r_inboard','machine',gdat_params.machine);
% r_outboard = gdat(params_equilibrium.shot,'r_outboard','machine',gdat_params.machine);
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner','machine',gdat_params.machine);
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer','machine',gdat_params.machine);
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner','machine',gdat_params.machine);
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer','machine',gdat_params.machine);
% surface = gdat(params_equilibrium.shot,'surface','machine',gdat_params.machine);
% trapped_fraction = gdat(params_equilibrium.shot,'trapped_fraction','machine',gdat_params.machine);
% triangularity_lower = gdat(params_equilibrium.shot,'triangularity_lower','machine',gdat_params.machine);
% triangularity_upper = gdat(params_equilibrium.shot,'triangularity_upper','machine',gdat_params.machine);
profiles_1d.volume = gdat(params_equilibrium.shot,'volume_rho','machine',gdat_params.machine,'liuqe',gdat_params.liuqe);
liuqe_opt = gdat_params.liuqe; % default at this stage but could take from gdat params like error bar
switch liuqe_opt
case {-1}, psitbx_str='FBTE';
case {1,21}, psitbx_str='LIUQE.M';
case {11}, psitbx_str='LIUQE';
case {2, 3, 22, 23}, psitbx_str=['LIUQE.M' num2str(mod(liuqe_opt,10))];
case {12,13}, psitbx_str=['LIUQE' num2str(mod(liuqe_opt,10))];
otherwise, error(['Unknown LIUQE version, liuqe = ' num2str(liuqe_opt)]);
end
fsd = psitbxtcv2(shot,profiles_1d.volume.t,'FS',psitbx_str);
grho_metric_3D = metric(fsd,-1);
% Introduced new anonymous function to compute FS average ...
metric_FS = metric(grho_metric_3D.grid,[2,3]);
denom=sum(metric_FS./grho_metric_3D,[2,3]);
FS_av = @(x) sum(x.*metric_FS./grho_metric_3D,[2,3])./denom;
R=metric(fsd,3);
Rm2av=FS_av(1./R.^2);
profiles_1d.gm1.data = Rm2av.x;
%tmp_gm = FS_av(grho_metric_3D.^2./R.^2); % this gives (grad rhopol/R)^2 not gm2 which is grad rhotor^2
%profiles_1d.gm2.data = tmp_gm.x;
tmp_gm = FS_av(1./R.^1);
profiles_1d.gm9.data = tmp_gm.x;
tmp_gm = FS_av(grho_metric_3D.^2./R.^2); % grad rhopol^2 to get <grad psi^2>
for it=1:numel(ids_equilibrium.time)
gradpsi_over_R_sq(:,it) = tmp_gm.x(:,it) .* 4 .* profiles_1d.volume.x.^2 .* ...
(ids_equilibrium.time_slice{it}.global_quantities.psi_boundary-ids_equilibrium.time_slice{it}.global_quantities.psi_axis).^2;
end
mu0 = 4.e-7 * pi;
j_tor = -profiles_1d.dpressure_dpsi.data ./ profiles_1d.gm9.data ...
- profiles_1d.gm1.data ./ profiles_1d.gm9.data .* profiles_1d.f_df_dpsi.data ./ mu0;
profiles_1d.j_tor.data = - 2.*pi.* j_tor; % 2pi sigma_bp * jtor above (Eq. (30) cocos paper cocos=17)
% $$$ j_par = - ids_equilibrium.vacuum_toroidal_field.r0.^2 .* profiles_1d.f.data ...
% $$$ ./repmat(profiles_1d.f.data(end,:),size(profiles_1d.f.data,1),1) ...
% $$$ .* (profiles_1d.dpressure_dpsi.data ...
% $$$ + profiles_1d.f_df_dpsi.data/mu0 .* (profiles_1d.gm1.data + gradpsi_sq ./ profiles_1d.f.data.^2);
j_par = - profiles_1d.f_df_dpsi.data./profiles_1d.f.data./mu0.*gradpsi_over_R_sq./2./pi ...
- profiles_1d.f.data .*2*pi .*profiles_1d.dpressure_dpsi.data ...
- profiles_1d.f.data .*2*pi /mu0.*profiles_1d.f_df_dpsi.data.*profiles_1d.gm1.data;
profiles_1d.j_parallel.data = j_par./repmat(ids_equilibrium.vacuum_toroidal_field.b0.data',size(profiles_1d.f.data,1),1);
profiles_1d_fieldnames = fieldnames(profiles_1d);
special_fields = {'geometric_axis', 'rho_tor_norm', 'psi'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(profiles_1d_fieldnames)
if ~any(strcmp(profiles_1d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}))
if ~ischar(profiles_1d.(profiles_1d_fieldnames{i}).data) && ~isempty(profiles_1d.(profiles_1d_fieldnames{i}).data) ...
&& size(profiles_1d.(profiles_1d_fieldnames{i}).data,2)>=it
ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}) = ...
profiles_1d.(profiles_1d_fieldnames{i}).data(:,it);
end
else
special_fields{end+1} = profiles_1d_fieldnames{i};
end
end
end
end
% special cases
nrho = numel(profiles_1d.rho_tor.x);
ntime = numel(temp.psi_axis.data);
for it=1:numel(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_field_tor = ids_equilibrium.time_slice{it}.profiles_1d.f(1) ...
./ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r;
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_tor = ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_field_tor;
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor_norm = ids_equilibrium.time_slice{it}.profiles_1d.rho_tor./ ...
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor(end);

Olivier Sauter
committed
ids_equilibrium.time_slice{it}.profiles_1d.psi = ids_equilibrium.time_slice{it}.global_quantities.psi_axis + ...
profiles_1d.rho_tor.x.^2 .* ...
(ids_equilibrium.time_slice{it}.global_quantities.psi_boundary- ids_equilibrium.time_slice{it}.global_quantities.psi_axis);
%
%% profiles_2d{1} ala eqdsk, only this one thus grid_type=1
%
% b_field_r = gdat(params_equilibrium.shot,'b_field_r','machine',gdat_params.machine);
% b_field_tor = gdat(params_equilibrium.shot,'b_field_tor','machine',gdat_params.machine);
% b_field_z = gdat(params_equilibrium.shot,'b_field_z','machine',gdat_params.machine);
% b_r = gdat(params_equilibrium.shot,'b_r','machine',gdat_params.machine);
% b_tor = gdat(params_equilibrium.shot,'b_tor','machine',gdat_params.machine);
% b_z = gdat(params_equilibrium.shot,'b_z','machine',gdat_params.machine);
% grid = gdat(params_equilibrium.shot,'grid','machine',gdat_params.machine); % special
profiles_2d.grid_type.name = 'rectangular';
profiles_2d.grid_type.index = 1;
profiles_2d.grid_type.description = 'Cylindrical R,Z ala eqdsk';
% j_parallel = gdat(params_equilibrium.shot,'j_parallel','machine',gdat_params.machine);
% j_tor = gdat(params_equilibrium.shot,'j_tor','machine',gdat_params.machine);
% phi = gdat(params_equilibrium.shot,'phi','machine',gdat_params.machine);
profiles_2d.psi = gdat(params_equilibrium.shot,'psi','machine',gdat_params.machine); % add psi_bound in a second step in special cases
% r = gdat(params_equilibrium.shot,'r','machine',gdat_params.machine); % not to be filled since in grid.dim1
% theta = gdat(params_equilibrium.shot,'theta','machine',gdat_params.machine);
% z = gdat(params_equilibrium.shot,'z','machine',gdat_params.machine); % not to be filled since in grid.dim2
profiles_2d_fieldnames = fieldnames(profiles_2d);
special_fields = {'grid', 'grid_type'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(profiles_2d_fieldnames)
if ~any(strcmp(profiles_2d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}))
if ~ischar(profiles_2d.(profiles_2d_fieldnames{i}).data) && ~isempty(profiles_2d.(profiles_2d_fieldnames{i}).data) ...
&& size(profiles_2d.(profiles_2d_fieldnames{i}).data,3)>=it
ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}) = ...
profiles_2d.(profiles_2d_fieldnames{i}).data(:,:,it);
end
else
special_fields{end+1} = profiles_2d_fieldnames{i};
end
end
end
end
% special cases
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.name = profiles_2d.grid_type.name;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.index = profiles_2d.grid_type.index;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.description = profiles_2d.grid_type.description;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim1 = profiles_2d.psi.dim{1};
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim2 = profiles_2d.psi.dim{2};
ids_equilibrium.time_slice{it}.profiles_2d{1}.psi(:,:) = ids_equilibrium.time_slice{it}.profiles_2d{1}.psi(:,:) + ...
global_quantities.psi_boundary.data(it);
% make arrays not filled in empty:
ids_equilibrium.grids_ggd = {};
for it=1:numel(ids_equilibrium.time_slice)
ids_equilibrium.time_slice{it}.ggd = {};
end