Newer
Older

Antoine Cyril David Hoffmann
committed
!! MODULE NUMERICS
! The module numerics contains a set of routines that are called only once at
! the begining of a run. These routines do not need to be optimzed
MODULE numerics
USE basic
USE prec_const
USE grid
USE utility

Antoine Cyril David Hoffmann
committed
implicit none
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op

Antoine Cyril David Hoffmann
committed
PUBLIC :: compute_lin_coeff
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, Only : dnjs
USE coeff
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
J = max(jmaxe,jmaxi)
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!!!!!!! Build the fourth derivative Hermite coefficient table
!******************************************************************************!
SUBROUTINE build_dv4Hp_table
USE array, ONLY: dv4_Hp_coeff
USE grid, ONLY: pmaxi, pmaxe
IMPLICIT NONE
INTEGER :: p_, pmax_
pmax_ = MAX(pmaxi,pmaxe)
DO p_ = -2,pmax_
if (p_ < 4) THEN
dv4_Hp_coeff(p_) = 0._dp
ELSE
dv4_Hp_coeff(p_) = 4_dp*SQRT(REAL((p_-3)*(p_-2)*(p_-1)*p_,dp))
ENDIF
ENDDO
!we scale it w.r.t. to the max degree since
!D_4^{v}\sim (\Delta v/2)^4 and \Delta v \sim 2pi/kvpar = pi/\sqrt{2P}
! dv4_Hp_coeff = dv4_Hp_coeff*(1._dp/2._dp/SQRT(REAL(pmax_,dp)))**4
dv4_Hp_coeff = dv4_Hp_coeff*(PI/2._dp/SQRT(2._dp*REAL(pmax_,dp)))**4
END SUBROUTINE build_dv4Hp_table
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator

Antoine Cyril David Hoffmann
committed
USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E
IMPLICIT NONE
Antoine Cyril David Hoffmann
committed
INTEGER :: j_int

Antoine Cyril David Hoffmann
committed
REAL(dp) :: j_dp, y_, factj
Antoine Cyril David Hoffmann
committed
DO eo = 0,1
Antoine Cyril David Hoffmann
committed
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO iz = izgs,izge
!!!!! Electron kernels !!!!!
IF(KIN_E) THEN
DO ij = ijgs_e, ijge_e
j_int = jarray_e(ij)
Antoine Cyril David Hoffmann
committed
j_dp = REAL(j_int,dp)
y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2
IF(j_int .LT. 0) THEN

Antoine Cyril David Hoffmann
committed
kernel_e(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
IF (ijs_e .EQ. 1) &
ENDIF
!!!!! Ion kernels !!!!!
DO ij = ijgs_i, ijge_i
Antoine Cyril David Hoffmann
committed
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2

Antoine Cyril David Hoffmann
committed
IF(j_int .LT. 0) THEN
kernel_i(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
IF (ijs_i .EQ. 1) &
Antoine Cyril David Hoffmann
committed
ENDDO
ENDDO
ENDDO
Antoine Cyril David Hoffmann
committed
ENDDO
!! Correction term for the evaluation of the heat flux
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = &
2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
-1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0)
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) &
- Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (&
2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0))
ENDDO
Antoine Cyril David Hoffmann
committed
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
SUBROUTINE evaluate_EM_op
IMPLICIT NONE
CALL evaluate_poisson_op
CALL evaluate_ampere_op
END SUBROUTINE evaluate_EM_op
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic

Antoine Cyril David Hoffmann
committed
USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : qe2_taue, qi2_taui, KIN_E
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
!!!!!!!!!!!!!!!!! Ion contribution
! loop over n only if the max polynomial degree
pol_i = 0._dp
DO ini=1,jmaxi+1
pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
IF (KIN_E) THEN ! Kinetic model
! loop over n only if the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
ELSE ! Adiabatic model

Antoine Cyril David Hoffmann
committed
pol_e = qe2_taue - 1._dp
ENDIF
inv_poisson_op(iky, ikx, iz) = 1._dp/(qi2_taui - pol_i + qe2_taue - pol_e)

Antoine Cyril David Hoffmann
committed
inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i)
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_ampere_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_ampere_op
USE grid

Antoine Cyril David Hoffmann
committed
USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i
USE geometry, ONLY : hatB
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! We do not solve Ampere if beta = 0 to spare waste of ressources
IF(SOLVE_AMPERE) THEN
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
kperp2 = kparray(iky,ikx,iz,0)**2
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_ampere_op(iky, ikx, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
pol_i = 0._dp
! loop over n only up to the max polynomial degree
DO ini=1,jmaxi+1
pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_i = q_i**2/(sigma_i**2) * pol_i
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
! loop over n only up to the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_e = q_e**2/(sigma_e**2) * pol_e
inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e))
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
ENDIF
END SUBROUTINE evaluate_ampere_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff
USE array, ONLY: xnepj, &
ynepp1j, ynepm1j, ynepp1jm1, ynepm1jm1,&
zNepm1j, zNepm1jp1, zNepm1jm1,&
xnepp1j, xnepm1j, xnepp2j, xnepm2j,&
xnepjp1, xnepjm1,&
xphij_e, xphijp1_e, xphijm1_e,&
xpsij_e, xpsijp1_e, xpsijm1_e,&
xnipj, &
ynipp1j, ynipm1j, ynipp1jm1, ynipm1jm1,&
zNipm1j, zNipm1jp1, zNipm1jm1,&
xnipp1j, xnipm1j, xnipp2j, xnipm2j,&
xnipjp1, xnipjm1,&
xphij_i, xphijp1_i, xphijm1_i,&
xpsij_i, xpsijp1_i, xpsijm1_i
USE model, ONLY: k_Te, k_Ti, k_Ne, k_Ni, k_cB, k_gB, KIN_E,&
tau_e, tau_i, sigma_e, sigma_i, q_e, q_i
USE prec_const
USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, &
ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i
IF(KIN_E) THEN
CALL lin_coeff(k_Te,k_Ne,k_cB,k_gB,tau_e,q_e,sigma_e,&
parray_e(ips_e:ipe_e),jarray_e(ijs_e:ije_e),ips_e,ipe_e,ijs_e,ije_e,&
xnepj,xnepp1j,xnepm1j,xnepp2j,xnepm2j,xnepjp1,xnepjm1,&
ynepp1j,ynepm1j,ynepp1jm1,ynepm1jm1,zNepm1j,zNepm1jp1,zNepm1jm1,&
xphij_e,xphijp1_e,xphijm1_e,xpsij_e,xpsijp1_e,xpsijm1_e)
ENDIF
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
CALL lin_coeff(k_Ti,k_Ni,k_cB,k_gB,tau_i,q_i,sigma_i,&
parray_i(ips_i:ipe_i),jarray_i(ijs_i:ije_i),ips_i,ipe_i,ijs_i,ije_i,&
xnipj,xnipp1j,xnipm1j,xnipp2j,xnipm2j,xnipjp1,xnipjm1,&
ynipp1j,ynipm1j,ynipp1jm1,ynipm1jm1,zNipm1j,zNipm1jp1,zNipm1jm1,&
xphij_i,xphijp1_i,xphijm1_i,xpsij_i,xpsijp1_i,xpsijm1_i)
CONTAINS
SUBROUTINE lin_coeff(k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a,&
parray_a,jarray_a,ips_a,ipe_a,ijs_a,ije_a,&
xnapj,xnapp1j,xnapm1j,xnapp2j,xnapm2j,xnapjp1,xnapjm1,&
ynapp1j,ynapm1j,ynapp1jm1,ynapm1jm1,zNapm1j,zNapm1jp1,zNapm1jm1,&
xphij_a,xphijp1_a,xphijm1_a,xpsij_a,xpsijp1_a,xpsijm1_a)
IMPLICIT NONE
! INPUTS
REAL(dp), INTENT(IN) :: k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a
INTEGER, DIMENSION(ips_a:ipe_a), INTENT(IN) :: parray_a
INTEGER, DIMENSION(ijs_a:ije_a), INTENT(IN) :: jarray_a
INTEGER, INTENT(IN) :: ips_a,ipe_a,ijs_a,ije_a
! OUTPUTS (linear coefficients used in moment_eq_rhs_mod.F90)
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xnapj
REAL(dp), DIMENSION(ips_a:ipe_a), INTENT(OUT) :: xnapp1j, xnapm1j, xnapp2j, xnapm2j
REAL(dp), DIMENSION(ijs_a:ije_a), INTENT(OUT) :: xnapjp1, xnapjm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: zNapm1j, zNapm1jp1, zNapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xphij_a, xphijp1_a, xphijm1_a
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xpsij_a, xpsijp1_a, xpsijm1_a
INTEGER :: p_int, j_int ! polynom. dagrees
REAL(dp) :: p_dp, j_dp
!! linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! All Napj terms
xnapj(ip,ij) = tau_a/q_a*(k_cB*(2._dp*p_dp + 1._dp) &
+k_gB*(2._dp*j_dp + 1._dp))
! Mirror force terms
ynapp1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp+1._dp)
ynapm1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp+1._dp)
ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
! Trapping terms
zNapm1j (ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp+1._dp)*SQRT(p_dp)
zNapm1jp1(ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
zNapm1jm1(ip,ij) = -SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
ENDDO
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
! Landau damping coefficients (ddz napj term)
xnapp1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp+1._dp)
xnapm1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp)
! Magnetic curvature term
xnapp2j(ip) = tau_a/q_a * k_cB * SQRT((p_dp+1._dp)*(p_dp + 2._dp))
xnapm2j(ip) = tau_a/q_a * k_cB * SQRT( p_dp *(p_dp - 1._dp))
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! Magnetic gradient term
xnapjp1(ij) = -tau_a/q_a * k_gB * (j_dp + 1._dp)
xnapjm1(ij) = -tau_a/q_a * k_gB * j_dp
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij_a(ip,ij) = +k_Na + 2._dp*j_dp*k_Ta
xphijp1_a(ip,ij) = -k_Ta*(j_dp+1._dp)
xphijm1_a(ip,ij) = -k_Ta* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij_a(ip,ij) = +k_Ta/SQRT2
xphijp1_a(ip,ij) = 0._dp; xphijm1_a(ip,ij) = 0._dp;
ELSE
xphij_a(ip,ij) = 0._dp; xphijp1_a(ip,ij) = 0._dp
xphijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Electromagnatic linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij_a (ip,ij) = +(k_Na + (2._dp*j_dp+1._dp)*k_Ta)* SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = - k_Ta*(j_dp+1._dp) * SQRT(tau_a)/sigma_a
xpsijm1_a(ip,ij) = - k_Ta* j_dp * SQRT(tau_a)/sigma_a
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij_a (ip,ij) = + k_Ta*SQRT3/SQRT2 * SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = 0._dp; xpsijm1_a(ip,ij) = 0._dp;
ELSE
xpsij_a (ip,ij) = 0._dp; xpsijp1_a(ip,ij) = 0._dp
xpsijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
END SUBROUTINE lin_coeff
END SUBROUTINE compute_lin_coeff
END MODULE numerics
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
!! MODULE NUMERICS
! The module numerics contains a set of routines that are called only once at
! the begining of a run. These routines do not need to be optimzed
MODULE numerics
USE basic
USE prec_const
USE grid
USE utility
implicit none
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op
PUBLIC :: compute_lin_coeff
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, ONLY : dnjs
USE FMZM, ONLY : TO_DP
USE coeff, ONLY : ALL2L
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
J = max(jmaxe,jmaxi)
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator
USE grid
USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E
IMPLICIT NONE
INTEGER :: j_int
REAL(dp) :: j_dp, y_, factj
DO eo = 0,1
DO ikx = ikxs,ikxe
DO iky = ikys,ikye
DO iz = izgs,izge
!!!!! Electron kernels !!!!!
IF(KIN_E) THEN
DO ij = ijgs_e, ijge_e
j_int = jarray_e(ij)
j_dp = REAL(j_int,dp)
y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2
IF(j_int .LT. 0) THEN
kernel_e(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
ENDDO
IF (ijs_e .EQ. 1) &
kernel_e(ijgs_e,iky,ikx,iz,eo) = 0._dp
ENDIF
!!!!! Ion kernels !!!!!
DO ij = ijgs_i, ijge_i
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2
IF(j_int .LT. 0) THEN
kernel_i(ij,iky,ikx,iz,eo) = 0._dp
ELSE
factj = GAMMA(j_dp+1._dp)
kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
ENDDO
IF (ijs_i .EQ. 1) &
kernel_i(ijgs_i,iky,ikx,iz,eo) = 0._dp
ENDDO
ENDDO
ENDDO
ENDDO
!! Correction term for the evaluation of the heat flux
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = &
2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
-1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0)
DO ij = ijs_i, ije_i
j_int = jarray_i(ij)
j_dp = REAL(j_int,dp)
HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) &
- Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (&
2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) &
- j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0))
ENDDO
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
SUBROUTINE evaluate_EM_op
IMPLICIT NONE
CALL evaluate_poisson_op
CALL evaluate_ampere_op
END SUBROUTINE evaluate_EM_op
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion
USE grid
USE model, ONLY : qe2_taue, qi2_taui, KIN_E
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_poisson_op(iky, ikx, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
! loop over n only if the max polynomial degree
pol_i = 0._dp
DO ini=1,jmaxi+1
pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
IF (KIN_E) THEN ! Kinetic model
! loop over n only if the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
ELSE ! Adiabatic model
pol_e = qe2_taue - 1._dp
ENDIF
inv_poisson_op(iky, ikx, iz) = 1._dp/(qi2_taui - pol_i + qe2_taue - pol_e)
inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i)
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_ampere_op
USE basic
USE array, Only : kernel_e, kernel_i, inv_ampere_op
USE grid
USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i
USE geometry, ONLY : hatB
IMPLICIT NONE
REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2))
INTEGER :: ini,ine
! We do not solve Ampere if beta = 0 to spare waste of ressources
IF(SOLVE_AMPERE) THEN
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = ikxs,ikxe
kyloop: DO iky = ikys,ikye
zloop: DO iz = izs,ize
kperp2 = kparray(iky,ikx,iz,0)**2
IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN
inv_ampere_op(iky, ikx, iz) = 0._dp
ELSE
!!!!!!!!!!!!!!!!! Ion contribution
pol_i = 0._dp
! loop over n only up to the max polynomial degree
DO ini=1,jmaxi+1
pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_i = q_i**2/(sigma_i**2) * pol_i
!!!!!!!!!!!!! Electron contribution
pol_e = 0._dp
! loop over n only up to the max polynomial degree
DO ine=1,jmaxe+1 ! ine = n+1
pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ...
END DO
pol_e = q_e**2/(sigma_e**2) * pol_e
inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e))
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
ENDIF
END SUBROUTINE evaluate_ampere_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff
USE array, ONLY: xnepj, &
ynepp1j, ynepm1j, ynepp1jm1, ynepm1jm1,&
zNepm1j, zNepm1jp1, zNepm1jm1,&
xnepp1j, xnepm1j, xnepp2j, xnepm2j,&
xnepjp1, xnepjm1,&
xphij_e, xphijp1_e, xphijm1_e,&
xpsij_e, xpsijp1_e, xpsijm1_e,&
xnipj, &
ynipp1j, ynipm1j, ynipp1jm1, ynipm1jm1,&
zNipm1j, zNipm1jp1, zNipm1jm1,&
xnipp1j, xnipm1j, xnipp2j, xnipm2j,&
xnipjp1, xnipjm1,&
xphij_i, xphijp1_i, xphijm1_i,&
xpsij_i, xpsijp1_i, xpsijm1_i
USE model, ONLY: k_Te, k_Ti, k_Ne, k_Ni, k_cB, k_gB, KIN_E,&
tau_e, tau_i, sigma_e, sigma_i, q_e, q_i
USE prec_const
USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, &
ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i
IF(KIN_E) THEN
CALL lin_coeff(k_Te,k_Ne,k_cB,k_gB,tau_e,q_e,sigma_e,&
parray_e(ips_e:ipe_e),jarray_e(ijs_e:ije_e),ips_e,ipe_e,ijs_e,ije_e,&
xnepj,xnepp1j,xnepm1j,xnepp2j,xnepm2j,xnepjp1,xnepjm1,&
ynepp1j,ynepm1j,ynepp1jm1,ynepm1jm1,zNepm1j,zNepm1jp1,zNepm1jm1,&
xphij_e,xphijp1_e,xphijm1_e,xpsij_e,xpsijp1_e,xpsijm1_e)
ENDIF
CALL lin_coeff(k_Ti,k_Ni,k_cB,k_gB,tau_i,q_i,sigma_i,&
parray_i(ips_i:ipe_i),jarray_i(ijs_i:ije_i),ips_i,ipe_i,ijs_i,ije_i,&
xnipj,xnipp1j,xnipm1j,xnipp2j,xnipm2j,xnipjp1,xnipjm1,&
ynipp1j,ynipm1j,ynipp1jm1,ynipm1jm1,zNipm1j,zNipm1jp1,zNipm1jm1,&
xphij_i,xphijp1_i,xphijm1_i,xpsij_i,xpsijp1_i,xpsijm1_i)
CONTAINS
SUBROUTINE lin_coeff(k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a,&
parray_a,jarray_a,ips_a,ipe_a,ijs_a,ije_a,&
xnapj,xnapp1j,xnapm1j,xnapp2j,xnapm2j,xnapjp1,xnapjm1,&
ynapp1j,ynapm1j,ynapp1jm1,ynapm1jm1,zNapm1j,zNapm1jp1,zNapm1jm1,&
xphij_a,xphijp1_a,xphijm1_a,xpsij_a,xpsijp1_a,xpsijm1_a)
IMPLICIT NONE
! INPUTS
REAL(dp), INTENT(IN) :: k_Ta,k_Na,k_cB,k_gB,tau_a,q_a,sigma_a
INTEGER, DIMENSION(ips_a:ipe_a), INTENT(IN) :: parray_a
INTEGER, DIMENSION(ijs_a:ije_a), INTENT(IN) :: jarray_a
INTEGER, INTENT(IN) :: ips_a,ipe_a,ijs_a,ije_a
! OUTPUTS (linear coefficients used in moment_eq_rhs_mod.F90)
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xnapj
REAL(dp), DIMENSION(ips_a:ipe_a), INTENT(OUT) :: xnapp1j, xnapm1j, xnapp2j, xnapm2j
REAL(dp), DIMENSION(ijs_a:ije_a), INTENT(OUT) :: xnapjp1, xnapjm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: zNapm1j, zNapm1jp1, zNapm1jm1
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xphij_a, xphijp1_a, xphijm1_a
REAL(dp), DIMENSION(ips_a:ipe_a,ijs_a:ije_a), INTENT(OUT) :: xpsij_a, xpsijp1_a, xpsijm1_a
INTEGER :: p_int, j_int ! polynom. dagrees
REAL(dp) :: p_dp, j_dp
!! linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! All Napj terms
xnapj(ip,ij) = tau_a/q_a*(k_cB*(2._dp*p_dp + 1._dp) &
+k_gB*(2._dp*j_dp + 1._dp))
! Mirror force terms
ynapp1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp+1._dp)
ynapm1j (ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
ynapp1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp+1._dp)
ynapm1jm1(ip,ij) = +SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
! Trapping terms
zNapm1j (ip,ij) = +SQRT(tau_a)/sigma_a *(2._dp*j_dp+1._dp)*SQRT(p_dp)
zNapm1jp1(ip,ij) = -SQRT(tau_a)/sigma_a * (j_dp+1._dp)*SQRT(p_dp)
zNapm1jm1(ip,ij) = -SQRT(tau_a)/sigma_a * j_dp*SQRT(p_dp)
ENDDO
ENDDO
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
p_dp = REAL(p_int,dp) ! REAL of Hermite degree
! Landau damping coefficients (ddz napj term)
xnapp1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp+1._dp)
xnapm1j(ip) = SQRT(tau_a)/sigma_a * SQRT(p_dp)
! Magnetic curvature term
xnapp2j(ip) = tau_a/q_a * k_cB * SQRT((p_dp+1._dp)*(p_dp + 2._dp))
xnapm2j(ip) = tau_a/q_a * k_cB * SQRT( p_dp *(p_dp - 1._dp))
ENDDO
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! Laguerre degree
j_dp = REAL(j_int,dp) ! REAL of Laguerre degree
! Magnetic gradient term
xnapjp1(ij) = -tau_a/q_a * k_gB * (j_dp + 1._dp)
xnapjm1(ij) = -tau_a/q_a * k_gB * j_dp
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij_a(ip,ij) = +k_Na + 2._dp*j_dp*k_Ta
xphijp1_a(ip,ij) = -k_Ta*(j_dp+1._dp)
xphijm1_a(ip,ij) = -k_Ta* j_dp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij_a(ip,ij) = +k_Ta/SQRT2
xphijp1_a(ip,ij) = 0._dp; xphijm1_a(ip,ij) = 0._dp;
ELSE
xphij_a(ip,ij) = 0._dp; xphijp1_a(ip,ij) = 0._dp
xphijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Electromagnatic linear coefficients for moment RHS !!!!!!!!!!
DO ip = ips_a, ipe_a
p_int= parray_a(ip) ! Hermite degree
DO ij = ijs_a, ije_a
j_int= jarray_a(ij) ! REALof Laguerre degree
j_dp = REAL(j_int,dp) ! REALof Laguerre degree
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij_a (ip,ij) = +(k_Na + (2._dp*j_dp+1._dp)*k_Ta)* SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = - k_Ta*(j_dp+1._dp) * SQRT(tau_a)/sigma_a
xpsijm1_a(ip,ij) = - k_Ta* j_dp * SQRT(tau_a)/sigma_a
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij_a (ip,ij) = + k_Ta*SQRT3/SQRT2 * SQRT(tau_a)/sigma_a
xpsijp1_a(ip,ij) = 0._dp; xpsijm1_a(ip,ij) = 0._dp;
ELSE
xpsij_a (ip,ij) = 0._dp; xpsijp1_a(ip,ij) = 0._dp
xpsijm1_a(ip,ij) = 0._dp;
ENDIF
ENDDO
ENDDO
END SUBROUTINE lin_coeff
END SUBROUTINE compute_lin_coeff
END MODULE numerics