Newer
Older
function [ids_equilibrium,ids_equilibrium_description,varargout] = tcv_get_ids_equilibrium(shot,ids_equil_empty, gdat_params,varargin);
% [ids_equilibrium,ids_equilibrium_description,varargout] = tcv_get_ids_equilibrium(shot,ids_equil_empty,varargin);
% gdat_params: gdat_data.gdat_params to get all params passed from original call, in particular error_bar and cocos_out options

Olivier Sauter
committed
if exist('gdat_params')
[ids_equilibrium, params_equilibrium] = tcv_ids_headpart(shot,ids_equil_empty,'equilibrium','gdat_params',gdat_params,varargin{:});
else
[ids_equilibrium, params_equilibrium] = tcv_ids_headpart(shot,ids_equil_empty,'equilibrium',varargin{:});
aa=gdat_tcv;
gdat_params = aa.gdat_params; % to get default params

Olivier Sauter
committed
end
% As a general rule, for a new substructure under the main ids, construct a local structure like:
% "global_quantities" with subfields being the relevant data to get and a local structure:
% "global_quantities_desc" which contains the same subfields themselves containing the gdat string aftre shot used
%
% vacuum_toroidal_field and time, using homogeneous
%
%% liuqe.m at this stage is missing correction 0.996, so use std source by time of default liuqe to make sure
params_eff_ref = gdat_params; params_eff_ref.doplot=0;
try;params_eff_ref=rmfield(params_eff_ref,'source');catch;end % make sure no source (from ids def)
params_eff = params_eff_ref;
params_eff.data_request='b0'; params_eff.source='liuqe'; % to get liuqe time array
bb = gdat(params_equilibrium.shot,params_eff);
params_eff = rmfield(params_eff,'source'); % to get original magnetics data
vacuum_toroidal_field.b0=gdat(params_equilibrium.shot,params_eff);

Olivier Sauter
committed
ij_ok = [isfinite(vacuum_toroidal_field.b0.data)];
vacuum_toroidal_field.b0.data = interpos(21,vacuum_toroidal_field.b0.t(ij_ok),vacuum_toroidal_field.b0.data(ij_ok),bb.t);
vacuum_toroidal_field.b0.t = bb.t;
vacuum_toroidal_field.b0.dim = {vacuum_toroidal_field.b0.t};
vacuum_toroidal_field_desc.b0 = ['''b0'',''timing source'',''liuqe=' num2str(gdat_params.liuqe) ''''];
vacuum_toroidal_field_desc.r0 = '.r0 subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.vacuum_toroidal_field.r0 = vacuum_toroidal_field.b0.r0;
ids_equilibrium.vacuum_toroidal_field.b0 = vacuum_toroidal_field.b0.data;
ids_equilibrium_description.vacuum_toroidal_field = vacuum_toroidal_field_desc;
ids_equilibrium.time = vacuum_toroidal_field.b0.t;
ids_equilibrium_description.time = '.t subfield from: [''b0'',''source'',''liuqe'']';
ids_equilibrium.time_slice(1:numel(ids_equilibrium.time)) = ids_equilibrium.time_slice(1);
% load time array data to copy to time_slices
% global_quantities data into local global_quantities.* structure with correct end names and global_quantities_desc.* with description. Use temp.* and temp_desc.* structures for temporary data
% brute force solution load all eqdsks
% $$$ for it=1:numel(ids_equilibrium.time)
% $$$ ids_equilibrium.time(it)
% $$$ temp.eqdsks{it}=gdat(params_equilibrium.shot,'eqdsk','time',ids_equilibrium.time(it),'write',0,'machine',gdat_params.machine);
% $$$ end
% $$$ temp_desc.eqdsks{1} = '''eqdsk'',''time'',ids_equilibrium.time(it)';
params_eff = params_eff_ref;
params_eff.data_request = 'area_edge';
global_quantities.area = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.area = params_eff.data_request;
params_eff.data_request = 'betan';
global_quantities.beta_normal = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.beta_normal = params_eff.data_request;
params_eff.data_request = 'betap';
global_quantities.beta_pol = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.beta_pol = params_eff.data_request;
params_eff.data_request = 'beta';
global_quantities.beta_tor = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.beta_tor = params_eff.data_request;
params_eff.data_request = 'w_mhd';
global_quantities.energy_mhd = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.energy_mhd = params_eff.data_request;
params_eff.data_request = 'ip';
global_quantities.ip = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.ip = params_eff.data_request;
% length_pol = gdat(params_equilibrium.shot,'length_pol','machine',gdat_params.machine); % to be added
params_eff.data_request = 'li';
global_quantities.li_3 = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.li_3 = params_eff.data_request;
params_eff.data_request = 'r_axis';
temp.r_magnetic_axis = gdat(params_equilibrium.shot,params_eff);
temp_desc.r_magnetic_axis = params_eff.data_request;
params_eff.data_request = 'z_axis';
temp.z_magnetic_axis = gdat(params_equilibrium.shot,params_eff);
temp_desc.z_magnetic_axis = params_eff.data_request;
params_eff.data_request = 'psi_axis';
temp.psi_axis = gdat(params_equilibrium.shot,params_eff); % needs to add psi_edge sincepsi_axis liuqe assuming 0 dege value
temp_desc.psi_axis = params_eff.data_request;
params_eff.data_request = 'psi_edge';
global_quantities.psi_boundary = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.psi_boundary = params_eff.data_request;
params_eff.data_request = 'q95';
global_quantities.q_95 = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.q_95 = params_eff.data_request;
params_eff.data_request = 'q0';
global_quantities.q_axis = gdat(params_equilibrium.shot,params_eff); % will be checked with q_rho?
global_quantities_desc.q_axis = params_eff.data_request;
params_eff.data_request = 'q_rho';
temp.q_rho = gdat(params_equilibrium.shot,params_eff);
temp_desc.q_rho = params_eff.data_request;
% surface = gdat(params_equilibrium.shot,'surface','machine',gdat_params.machine); % to be added
params_eff.data_request = 'volume';
global_quantities.volume = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.volume = params_eff.data_request;
params_eff.data_request = 'w_mhd';
global_quantities.w_mhd = gdat(params_equilibrium.shot,params_eff);
global_quantities_desc.w_mhd = params_eff.data_request;
global_quantities_fieldnames = fieldnames(global_quantities);
special_fields = {'magnetic_axis', 'psi_axis', 'q_min'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(global_quantities_fieldnames)
if ~any(strcmp(global_quantities_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}))
ids_equilibrium.time_slice{it}.global_quantities.(global_quantities_fieldnames{i}) = ...
global_quantities.(global_quantities_fieldnames{i}).data(it);
else
special_fields{end+1} = global_quantities_fieldnames{i};
end
end
end
end
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r = temp.r_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.z = temp.z_magnetic_axis.data(it);
ids_equilibrium.time_slice{it}.global_quantities.psi_axis = temp.psi_axis.data(it) + ...
ids_equilibrium.time_slice{it}.global_quantities.psi_boundary;
[zz,izz]=min(temp.q_rho.data(:,it));
ids_equilibrium.time_slice{it}.global_quantities.q_min.value = zz;
ids_equilibrium.time_slice{it}.global_quantities.q_min.rho_tor_norm = temp.q_rho.grids_1d.rhotornorm(izz);
end
% for boundary in addition to lcfs
% active_limiter_point = gdat(params_equilibrium.shot,'active_limiter_point','machine',gdat_params.machine);
params_eff.data_request = 'kappa';
boundary.elongation = gdat(params_equilibrium.shot,params_eff);
boundary_desc.elongation = params_eff.data_request;
% elongation_lower = gdat(params_equilibrium.shot,'elongation_lower','machine',gdat_params.machine);
% elongation_upper = gdat(params_equilibrium.shot,'elongation_upper','machine',gdat_params.machine);
params_eff.data_request = 'a_minor';
boundary.minor_radius = gdat(params_equilibrium.shot,params_eff);
boundary_desc.minor_radius = params_eff.data_request;
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner','machine',gdat_params.machine);
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer','machine',gdat_params.machine);
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner','machine',gdat_params.machine);
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer','machine',gdat_params.machine);
% strike_point = gdat(params_equilibrium.shot,'strike_point','machine',gdat_params.machine);
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
params_eff.data_request = 'delta';
boundary.triangularity = gdat(params_equilibrium.shot,params_eff);
boundary_desc.triangularity = params_eff.data_request;
params_eff.data_request = 'delta_bottom';
boundary.triangularity_lower = gdat(params_equilibrium.shot,params_eff);
boundary_desc.triangularity_lower = params_eff.data_request;
params_eff.data_request = 'delta_top';
boundary.triangularity_upper = gdat(params_equilibrium.shot,params_eff);
boundary_desc.triangularity_upper = params_eff.data_request;
params_eff.data_request = 'tcv_eq(''''n_xpts'''',''''liuqe.m'''')';
temp.n_x_point = gdat(params_equilibrium.shot,params_eff);
temp_desc.n_x_point = params_eff.data_request;
params_eff.data_request = 'tcv_eq(''''r_xpts'''',''''liuqe.m'''')';
temp.r_x_point = gdat(params_equilibrium.shot,params_eff);
temp_desc.r_x_point = params_eff.data_request;
params_eff.data_request = 'tcv_eq(''''z_xpts'''',''''liuqe.m'''')';
temp.z_x_point = gdat(params_equilibrium.shot,params_eff);
temp_desc.z_x_point = params_eff.data_request;
params_eff.data_request = 'rgeom';
temp.rgeom = gdat(params_equilibrium.shot,params_eff);
temp_desc.rgeom = params_eff.data_request;
params_eff.data_request = 'zgeom';
temp.zgeom = gdat(params_equilibrium.shot,params_eff);
temp_desc.zgeom = params_eff.data_request;
params_eff.data_request = 'r_contour_edge';
temp.r_lcfs = gdat(params_equilibrium.shot,params_eff);
temp_desc.r_lcfs = params_eff.data_request;
params_eff.data_request = 'z_contour_edge';
temp.z_lcfs = gdat(params_equilibrium.shot,params_eff);
temp_desc.z_lcfs = params_eff.data_request;
boundary_fieldnames = fieldnames(boundary);
special_fields = {'lcfs', 'geometric_axis', 'x_point'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(boundary_fieldnames)
if ~any(strcmp(boundary_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}))
ids_equilibrium.time_slice{it}.boundary.(boundary_fieldnames{i}) = ...
boundary.(boundary_fieldnames{i}).data(it);
else
special_fields{end+1} = boundary_fieldnames{i};
end
end
end
end
% special cases
ids_equilibrium.time_slice{it}.boundary.outline.r = temp.r_lcfs.data(:,it);
ids_equilibrium.time_slice{it}.boundary.outline.z = temp.z_lcfs.data(:,it);
ids_equilibrium.time_slice{it}.boundary.lcfs.r = ids_equilibrium.time_slice{it}.boundary.outline.r;
ids_equilibrium.time_slice{it}.boundary.lcfs.z = ids_equilibrium.time_slice{it}.boundary.outline.z;
ids_equilibrium.time_slice{it}.boundary.geometric_axis.r = temp.rgeom.data(it);
ids_equilibrium.time_slice{it}.boundary.geometric_axis.z = temp.zgeom.data(it);
if temp.n_x_point.data(it) > 0
ids_equilibrium.time_slice{it}.boundary.x_point(1:temp.n_x_point.data(it)) = ids_equilibrium.time_slice{it}.boundary.x_point(1);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.r = temp.r_x_point.data(i,it);
ids_equilibrium.time_slice{it}.boundary.x_point{i}.z = temp.z_x_point.data(i,it);
end
else
ids_equilibrium.time_slice{it}.boundary.x_point = {};
end
end
%
%% profiles_1d (cannot use eqdsk since not same radial mesh)
%
% area = gdat(params_equilibrium.shot,'area','machine',gdat_params.machine);
% b_average = gdat(params_equilibrium.shot,'b_average','machine',gdat_params.machine);
% beta_pol = gdat(params_equilibrium.shot,'beta_pol','machine',gdat_params.machine);
% b_field_average = gdat(params_equilibrium.shot,'b_field_average','machine',gdat_params.machine);
% b_field_max = gdat(params_equilibrium.shot,'b_field_max','machine',gdat_params.machine);
% b_field_min = gdat(params_equilibrium.shot,'b_field_min','machine',gdat_params.machine);
% b_max = gdat(params_equilibrium.shot,'b_max','machine',gdat_params.machine);
% b_min = gdat(params_equilibrium.shot,'b_min','machine',gdat_params.machine);
% darea_dpsi = gdat(params_equilibrium.shot,'darea_dpsi','machine',gdat_params.machine);
% darea_drho_tor = gdat(params_equilibrium.shot,'darea_drho_tor','machine',gdat_params.machine);
params_eff.data_request = 'pprime';
profiles_1d.dpressure_dpsi = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.dpressure_dpsi = params_eff.data_request;
% dpsi_drho_tor = gdat(params_equilibrium.shot,'dpsi_drho_tor','machine',gdat_params.machine);
% dvolume_dpsi = gdat(params_equilibrium.shot,'dvolume_dpsi','machine',gdat_params.machine);
% dvolume_drho_tor = gdat(params_equilibrium.shot,'dvolume_drho_tor','machine',gdat_params.machine);
% elongation = gdat(params_equilibrium.shot,'elongation','machine',gdat_params.machine);
params_eff.data_request = 'ttprime';
profiles_1d.f_df_dpsi = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.f_df_dpsi = [params_eff.data_request '* 0.996^2'];
params_eff.data_request = 'rbphi_rho';
profiles_1d.f = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.f = [params_eff.data_request '* 0.996'];
profiles_1d.f.data = 0.996 * profiles_1d.f.data;
profiles_1d.f_df_dpsi.data = 0.996.^2 .* profiles_1d.f_df_dpsi.data;
% geometric_axis = gdat(params_equilibrium.shot,'geometric_axis','machine',gdat_params.machine);
% gm1 = gdat(params_equilibrium.shot,'gm1','machine',gdat_params.machine);
% gm2 = gdat(params_equilibrium.shot,'gm2','machine',gdat_params.machine);
% gm3 = gdat(params_equilibrium.shot,'gm3','machine',gdat_params.machine);
% gm4 = gdat(params_equilibrium.shot,'gm4','machine',gdat_params.machine);
% gm5 = gdat(params_equilibrium.shot,'gm5','machine',gdat_params.machine);
% gm6 = gdat(params_equilibrium.shot,'gm6','machine',gdat_params.machine);
% gm7 = gdat(params_equilibrium.shot,'gm7','machine',gdat_params.machine);
% gm8 = gdat(params_equilibrium.shot,'gm8','machine',gdat_params.machine);
% gm9 = gdat(params_equilibrium.shot,'gm9','machine',gdat_params.machine);
% j_parallel = gdat(params_equilibrium.shot,'j_parallel','machine',gdat_params.machine);
% j_tor = gdat(params_equilibrium.shot,'j_tor','machine',gdat_params.machine);
% magnetic_shear = gdat(params_equilibrium.shot,'magnetic_shear','machine',gdat_params.machine);
% mass_density = gdat(params_equilibrium.shot,'mass_density','machine',gdat_params.machine);
params_eff.data_request = 'phi_tor';
profiles_1d.phi = gdat(params_equilibrium.shot,params_eff);
profiles_1d.phi.data = 0.996 * profiles_1d.phi.data;
profiles_1d_desc.phi = [params_eff.data_request '* 0.996'];
params_eff.data_request = 'pressure';
profiles_1d.pressure = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.pressure = params_eff.data_request;
% psi = gdat(params_equilibrium.shot,'psi_rho','machine',gdat_params.machine); % (could take from .x of any like rhotor and psi_axis, psi_edge from global_quantities)
params_eff.data_request = 'q_rho';
profiles_1d.q = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.q = params_eff.data_request;
params_eff.data_request = 'rhotor';
profiles_1d.rho_tor = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.rho_tor = params_eff.data_request;
%rho_tor_norm = gdat(params_equilibrium.shot,'rhotor_norm','machine',gdat_params.machine); % from rho_tor
params_eff.data_request = 'rhovol';
profiles_1d.rho_volume_norm = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.rho_volume_norm = params_eff.data_request;
% r_inboard = gdat(params_equilibrium.shot,'r_inboard','machine',gdat_params.machine);
% r_outboard = gdat(params_equilibrium.shot,'r_outboard','machine',gdat_params.machine);
% squareness_lower_inner = gdat(params_equilibrium.shot,'squareness_lower_inner','machine',gdat_params.machine);
% squareness_lower_outer = gdat(params_equilibrium.shot,'squareness_lower_outer','machine',gdat_params.machine);
% squareness_upper_inner = gdat(params_equilibrium.shot,'squareness_upper_inner','machine',gdat_params.machine);
% squareness_upper_outer = gdat(params_equilibrium.shot,'squareness_upper_outer','machine',gdat_params.machine);
% surface = gdat(params_equilibrium.shot,'surface','machine',gdat_params.machine);
% trapped_fraction = gdat(params_equilibrium.shot,'trapped_fraction','machine',gdat_params.machine);
% triangularity_lower = gdat(params_equilibrium.shot,'triangularity_lower','machine',gdat_params.machine);
% triangularity_upper = gdat(params_equilibrium.shot,'triangularity_upper','machine',gdat_params.machine);
params_eff.data_request = 'volume_rho';
profiles_1d.volume = gdat(params_equilibrium.shot,params_eff);
profiles_1d_desc.volume = params_eff.data_request;
liuqe_opt = gdat_params.liuqe; % default at this stage but could take from gdat params like error bar
switch liuqe_opt
case {-1}, psitbx_str='FBTE';
case {1,21}, psitbx_str='LIUQE.M';
case {11}, psitbx_str='LIUQE';
case {2, 3, 22, 23}, psitbx_str=['LIUQE.M' num2str(mod(liuqe_opt,10))];
case {12,13}, psitbx_str=['LIUQE' num2str(mod(liuqe_opt,10))];
otherwise, error(['Unknown LIUQE version, liuqe = ' num2str(liuqe_opt)]);
end
fsd = psitbxtcv2(shot,profiles_1d.volume.t,'FS',psitbx_str); % will get automatically the correct time interval
grho_metric_3D = metric(fsd,-1);
% Introduced new anonymous function to compute FS average ...
metric_FS = metric(grho_metric_3D.grid,[2,3]);
denom=sum(metric_FS./grho_metric_3D,[2,3]);
FS_av = @(x) sum(x.*metric_FS./grho_metric_3D,[2,3])./denom;
R=metric(fsd,3);
Rm2av=FS_av(1./R.^2);
profiles_1d.gm1.data = Rm2av.x;
profiles_1d_desc.gm1 = ['psitbxtcv2 with ' psitbx_str ' then Rm2av=FS_av(1./R.^2)'];
%tmp_gm = FS_av(grho_metric_3D.^2./R.^2); % this gives (grad rhopol/R)^2 not gm2 which is grad rhotor^2
%profiles_1d.gm2.data = tmp_gm.x;
tmp_gm = FS_av(1./R.^1);
profiles_1d.gm9.data = tmp_gm.x;
profiles_1d_desc.gm9 = 'FS_av(1./R.^1)';
tmp_gm = FS_av(grho_metric_3D.^2./R.^2); % grad rhopol^2 to get <grad psi^2>
for it=1:numel(ids_equilibrium.time)
gradpsi_over_R_sq(:,it) = tmp_gm.x(:,it) .* 4 .* profiles_1d.volume.x.^2 .* ...
(ids_equilibrium.time_slice{it}.global_quantities.psi_boundary-ids_equilibrium.time_slice{it}.global_quantities.psi_axis).^2;
end
mu0 = 4.e-7 * pi;
% Eq. (30) cocos paper cocos=17
% j_tor=<jphi/R>/<1/R>=-sigma_Bp (2pi)^e_Bp dp/dpsi / <1/R> - sigma_Bp (2pi)^e_Bp F dF/dpsi / mu0 <1/R^2> / <1/R>
% simaBp=-1 and eBp=1 for cocos=17 from TCV LIUQE
profiles_1d.j_tor.data = - (-1.) .* 2.*pi .* profiles_1d.dpressure_dpsi.data ./ profiles_1d.gm9.data ...
- (-1.) .* 2.*pi .* profiles_1d.gm1.data ./ profiles_1d.gm9.data .* profiles_1d.f_df_dpsi.data ./ mu0;
%
% <j.B> = - sigma_Bp (2pi)^e_Bp dp/dpsi F - sigma_Bp F dF/dpsi / mu0 [ (2pi)^e_Bp F <1/R^2> + 1/(2pi)^e_Bp * <|grad psi|^2/R^2> / F ]
% simaBp=-1 and eBp=1 for cocos=17 from TCV LIUQE
%
j_par = - (-1.) .* 2*pi .* profiles_1d.dpressure_dpsi.data .* profiles_1d.f.data ...
- (-1.) .* profiles_1d.f_df_dpsi.data ./ mu0 .* ...
( (2.*pi) .* profiles_1d.f.data .* profiles_1d.gm1.data + 1./(2.*pi) .* gradpsi_over_R_sq ./ profiles_1d.f.data);
profiles_1d.j_parallel.data = j_par./repmat(ids_equilibrium.vacuum_toroidal_field.b0',size(profiles_1d.f.data,1),1);
profiles_1d_fieldnames = fieldnames(profiles_1d);
special_fields = {'geometric_axis', 'rho_tor_norm', 'psi'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(profiles_1d_fieldnames)
if ~any(strcmp(profiles_1d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}))
if ~ischar(profiles_1d.(profiles_1d_fieldnames{i}).data) && ~isempty(profiles_1d.(profiles_1d_fieldnames{i}).data) ...
&& size(profiles_1d.(profiles_1d_fieldnames{i}).data,2)>=it
ids_equilibrium.time_slice{it}.profiles_1d.(profiles_1d_fieldnames{i}) = ...
profiles_1d.(profiles_1d_fieldnames{i}).data(:,it);
end
else
special_fields{end+1} = profiles_1d_fieldnames{i};
end
end
end
end
% special cases
nrho = numel(profiles_1d.rho_tor.x);
ntime = numel(temp.psi_axis.data);
for it=1:numel(ids_equilibrium.time)
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_field_tor = ids_equilibrium.time_slice{it}.profiles_1d.f(1) ...
./ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.r;
ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_tor = ids_equilibrium.time_slice{it}.global_quantities.magnetic_axis.b_field_tor;
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor_norm = ids_equilibrium.time_slice{it}.profiles_1d.rho_tor./ ...
ids_equilibrium.time_slice{it}.profiles_1d.rho_tor(end);

Olivier Sauter
committed
ids_equilibrium.time_slice{it}.profiles_1d.psi = ids_equilibrium.time_slice{it}.global_quantities.psi_axis + ...
profiles_1d.rho_tor.x.^2 .* ...
(ids_equilibrium.time_slice{it}.global_quantities.psi_boundary- ids_equilibrium.time_slice{it}.global_quantities.psi_axis);
%
%% profiles_2d{1} ala eqdsk, only this one thus grid_type=1
%
% b_field_r = gdat(params_equilibrium.shot,'b_field_r','machine',gdat_params.machine);
% b_field_tor = gdat(params_equilibrium.shot,'b_field_tor','machine',gdat_params.machine);
% b_field_z = gdat(params_equilibrium.shot,'b_field_z','machine',gdat_params.machine);
% b_r = gdat(params_equilibrium.shot,'b_r','machine',gdat_params.machine);
% b_tor = gdat(params_equilibrium.shot,'b_tor','machine',gdat_params.machine);
% b_z = gdat(params_equilibrium.shot,'b_z','machine',gdat_params.machine);
% grid = gdat(params_equilibrium.shot,'grid','machine',gdat_params.machine); % special
profiles_2d.grid_type.name = 'rectangular';
profiles_2d.grid_type.index = 1;
profiles_2d.grid_type.description = 'Cylindrical R,Z ala eqdsk';
% j_parallel = gdat(params_equilibrium.shot,'j_parallel','machine',gdat_params.machine);
% j_tor = gdat(params_equilibrium.shot,'j_tor','machine',gdat_params.machine);
% phi = gdat(params_equilibrium.shot,'phi','machine',gdat_params.machine);
params_eff.data_request = 'psi';
profiles_2d.psi = gdat(params_equilibrium.shot,params_eff); % add psi_bound in a second step in special cases
profiles_2d_desc.psi = [params_eff.data_request ' adding psi_bound in a 2nd step'];
% r = gdat(params_equilibrium.shot,'r','machine',gdat_params.machine); % not to be filled since in grid.dim1
% theta = gdat(params_equilibrium.shot,'theta','machine',gdat_params.machine);
% z = gdat(params_equilibrium.shot,'z','machine',gdat_params.machine); % not to be filled since in grid.dim2
profiles_2d_fieldnames = fieldnames(profiles_2d);
special_fields = {'grid', 'grid_type'}; % fields needing non-automatic treatments
for it=1:numel(ids_equilibrium.time)
for i=1:numel(profiles_2d_fieldnames)
if ~any(strcmp(profiles_2d_fieldnames{i},special_fields))
if ~isstruct(ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}))
if ~ischar(profiles_2d.(profiles_2d_fieldnames{i}).data) && ~isempty(profiles_2d.(profiles_2d_fieldnames{i}).data) ...
&& size(profiles_2d.(profiles_2d_fieldnames{i}).data,3)>=it
ids_equilibrium.time_slice{it}.profiles_2d{1}.(profiles_2d_fieldnames{i}) = ...
profiles_2d.(profiles_2d_fieldnames{i}).data(:,:,it);
end
else
special_fields{end+1} = profiles_2d_fieldnames{i};
end
end
end
end
% special cases
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.name = profiles_2d.grid_type.name;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.index = profiles_2d.grid_type.index;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid_type.description = profiles_2d.grid_type.description;
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim1 = profiles_2d.psi.dim{1};
ids_equilibrium.time_slice{it}.profiles_2d{1}.grid.dim2 = profiles_2d.psi.dim{2};
ids_equilibrium.time_slice{it}.profiles_2d{1}.psi(:,:) = ids_equilibrium.time_slice{it}.profiles_2d{1}.psi(:,:) + ...
global_quantities.psi_boundary.data(it);
% make arrays not filled in empty:
ids_equilibrium.grids_ggd = {};
for it=1:numel(ids_equilibrium.time_slice)
ids_equilibrium.time_slice{it}.boundary.strike_point = {};
ids_equilibrium.time_slice{it}.boundary_separatrix.x_point = {};
ids_equilibrium.time_slice{it}.boundary_separatrix.strike_point = {};
ids_equilibrium.time_slice{it}.constraints.bpol_probe = {};
ids_equilibrium.time_slice{it}.constraints.faraday_angle = {};
ids_equilibrium.time_slice{it}.constraints.mse_polarisation_angle = {};
ids_equilibrium.time_slice{it}.constraints.flux_loop = {};
ids_equilibrium.time_slice{it}.constraints.iron_core_segment = {};
ids_equilibrium.time_slice{it}.constraints.n_e = {};
ids_equilibrium.time_slice{it}.constraints.n_e_line = {};
ids_equilibrium.time_slice{it}.constraints.pf_current = {};
ids_equilibrium.time_slice{it}.constraints.pressure = {};
ids_equilibrium.time_slice{it}.constraints.q = {};
ids_equilibrium.time_slice{it}.constraints.x_point = {};

Olivier Sauter
committed
% special test matrix cocos transform
% $$$ ldim1=129;
% $$$ ldim2=257;
% $$$ it=1;
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.grid_type.index = 13;
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.grid.dim1 = linspace(0,1,ldim1)';
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.grid.dim2 = linspace(0,2*pi,ldim2);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.tensor_contravariant = 2.*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.tensor_covariant = 0.5*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.g13_contravariant = 13.*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.g13_contravariant_error_upper = 14.*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.g13_contravariant_error_lower = 12.*ones(ldim1,ldim2,3,3);
% $$$ for it=1:2100
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.g11_contravariant = 11.*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.coordinate_system.tensor_covariant = 0.5*ones(ldim1,ldim2,3,3);
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid_type.name = profiles_2d.grid_type.name;
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid_type.index = 11;
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid_type.description = profiles_2d.grid_type.description;
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid.dim1 = linspace(0,1,ldim1)';
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid.dim1_error_upper = 1.2.*linspace(0,1,ldim1)';
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid.dim1_error_lower = 0.8.*linspace(0,1,ldim1)';
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.grid.dim2 = linspace(0,2*pi,ldim2);
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.psi(:,:) = 11.*ones(ldim1,ldim2);
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.psi_error_upper(:,:) = 12.*ones(ldim1,ldim2);
% $$$ ids_equilibrium.time_slice{it}.profiles_2d{2}.psi_error_lower(:,:) = 10.*ones(ldim1,ldim2);

Olivier Sauter
committed
if exist('ids_generic_cocos_nodes_transformation_symbolic') == 2
[ids_equilibrium,cocoscoeff]=ids_generic_cocos_nodes_transformation_symbolic(ids_equilibrium,'equilibrium',gdat_params.cocos_in, ...
gdat_params.cocos_out,gdat_params.ipsign_out,gdat_params.b0sign_out,gdat_params.ipsign_in,gdat_params.b0sign_in, ...
gdat_params.error_bar,gdat_params.nverbose);