Newer
Older

Antoine Cyril David Hoffmann
committed
!! MODULE NUMERICS
! The module numerics contains a set of routines that are called only once at
! the beginng of a run. These routines do not need to be optimzed
MODULE numerics
USE prec_const, ONLY: xp
IMPLICIT NONE
PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op
PUBLIC :: compute_lin_coeff, build_dv4Hp_table
CONTAINS
!******************************************************************************!
!!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin
!******************************************************************************!
SUBROUTINE build_dnjs_table
USE array, ONLY : dnjs
USE FMZM, ONLY : TO_DP
USE coeff, ONLY : ALL2L
USE grid, ONLY : jmax
IMPLICIT NONE
INTEGER :: in, ij, is, J
INTEGER :: n_, j_, s_
DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetrys
n_ = in - 1
DO ij = in,J+1
j_ = ij - 1
DO is = ij,J+1
s_ = is - 1
dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0))
! By symmetry
dnjs(in,is,ij) = dnjs(in,ij,is)
dnjs(ij,in,is) = dnjs(in,ij,is)
dnjs(ij,is,in) = dnjs(in,ij,is)
dnjs(is,ij,in) = dnjs(in,ij,is)
dnjs(is,in,ij) = dnjs(in,ij,is)
ENDDO
ENDDO
ENDDO
END SUBROUTINE build_dnjs_table
!******************************************************************************!
!!!!!!! Build the fourth derivative Hermite coefficient table
!******************************************************************************!
SUBROUTINE build_dv4Hp_table
USE array, ONLY: dv4_Hp_coeff
USE grid, ONLY: pmax
USE prec_const, ONLY: xp, PI
INTEGER :: p_
DO p_ = -2,pmax
dv4_Hp_coeff(p_) = 0._xp
dv4_Hp_coeff(p_) = 4_xp*SQRT(REAL((p_-3)*(p_-2)*(p_-1)*p_,xp))
ENDIF
ENDDO
!we scale it w.r.t. to the max degree since
!D_4^{v}\sim (\Delta v/2)^4 and \Delta v \sim 2pi/kvpar = pi/\sqrt{2P}
! dv4_Hp_coeff = dv4_Hp_coeff*(1._xp/2._xp/SQRT(REAL(pmax,xp)))**4
dv4_Hp_coeff = dv4_Hp_coeff*(PI/2._xp/SQRT(2._xp*REAL(pmax,xp)))**4
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate the kernels once for all
!******************************************************************************!
SUBROUTINE evaluate_kernels
USE basic
USE prec_const, ONLY: xp
USE array, ONLY : kernel!, HF_phi_correction_operator
USE grid, ONLY : local_na, local_nj,ngj, local_nkx, local_nky, local_nz, ngz, jarray, kp2array,&
USE species, ONLY : sigma2_tau_o2
USE model, ONLY : KN_MODEL, ORDER
#ifdef LAPACK
USE model, ONLY : ORDER_NUM, ORDER_DEN
#endif
IMPLICIT NONE
INTEGER :: j_int, ia, eo, ikx, iky, iz, ij
REAL(xp) :: j_xp, y_, factj, sigma_i
sigma_i = 1._xp ! trivial singe sigma_a = sqrt(m_a/m_i)
SELECT CASE (KN_MODEL)
CASE('taylor') ! developped with Leonhard Driever
! Kernels based on the ORDER_NUM order Taylor series of J0
WRITE (*,*) 'Kernel approximation uses Taylor series with ', ORDER, ' powers of k'
DO ia = 1,local_na
DO eo = 1,nzgrid
DO ikx = 1,local_nkx
DO iky = 1,local_nky
DO iz = 1,local_nz + ngz
DO ij = 1,local_nj + ngj
y_ = sigma2_tau_o2(ia) * kp2array(iky,ikx,iz,eo)
j_int = jarray(ij)
IF (j_int > ORDER .OR. j_int < 0) THEN
kernel(ia,ij,ikx,iky,iz,eo) = 0._xp
ELSE
kernel(ia,ij,ikx,iky,iz,eo) = taylor_kernel_n(ORDER, j_int, y_)
ENDIF
ENDDO
ENDDO
CASE ('pade')
! Kernels based on the ORDER_NUM / ORDER_DEN Pade approximation of the kernels
WRITE (*,*) 'Kernel approximation uses ', ORDER_NUM ,'/', ORDER_DEN, ' Pade approximation'
DO ia = 1,local_na
DO eo = 1,nzgrid
DO ikx = 1,local_nkx
DO iky = 1,local_nky
DO iz = 1,local_nz + ngz
DO ij = 1,local_nj + ngj
y_ = sigma2_tau_o2(ia) * kp2array(iky,ikx,iz,eo)
j_int = jarray(ij)
IF (j_int > ORDER_NUM .OR. j_int < 0) THEN
kernel(ia,ij,ikx,iky,iz,eo) = 0._xp
ELSE
kernel(ia,ij,ikx,iky,iz,eo) = pade_kernel_n(j_int, y_,ORDER_NUM,ORDER_DEN)
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
#else
error stop "ERROR STOP: Pade kernels cannot be used when LAPACK is not included (marconi?)"
CASE DEFAULT
DO ia = 1,local_na
DO eo = 1,nzgrid
DO ikx = 1,local_nkx
DO iky = 1,local_nky
DO iz = 1,local_nz + ngz
DO ij = 1,local_nj + ngj
j_int = jarray(ij)
j_xp = REAL(j_int,xp)
y_ = sigma2_tau_o2(ia) * kp2array(iky,ikx,iz,eo)
IF(j_int .LT. 0) THEN !ghosts values
kernel(ia,ij,iky,ikx,iz,eo) = 0._xp
ELSE
factj = REAL(GAMMA(j_xp+1._xp),xp)
kernel(ia,ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
END SELECT
! !! Correction term for the evaluation of the heat flux
! HF_phi_correction_operator(:,:,:) = &
! 2._xp * Kernel(ia,1,:,:,:,1) &
! -1._xp * Kernel(ia,2,:,:,:,1)
! j_xp = REAL(j_int,xp)
! HF_phi_correction_operator(:,:,:) = HF_phi_correction_operator(:,:,:) &
! - Kernel(ia,ij,:,:,:,1) * (&
! 2._xp*(j_xp+1.5_xp) * Kernel(ia,ij ,:,:,:,1) &
! - (j_xp+1.0_xp) * Kernel(ia,ij+1,:,:,:,1) &
! - j_xp * Kernel(ia,ij-1,:,:,:,1))
END SUBROUTINE evaluate_kernels
!******************************************************************************!
!******************************************************************************!
SUBROUTINE evaluate_EM_op
IMPLICIT NONE
CALL evaluate_poisson_op
CALL evaluate_ampere_op
END SUBROUTINE evaluate_EM_op
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_poisson_op
USE basic
USE array, ONLY : kernel, inv_poisson_op, inv_pol_ion
USE grid, ONLY : local_na, local_nkx, local_nky, local_nz,&
kxarray, kyarray, local_nj, ngj, ngz, ieven
USE species, ONLY : q2_tau
USE model, ONLY : ADIAB_E, ADIAB_I, tau_i, q_i
USE prec_const, ONLY: xp
IMPLICIT NONE
REAL(xp) :: pol_tot, operator_ion
INTEGER :: in,ikx,iky,iz,ia
! This term has no staggered grid dependence. It is evalued for the
! even z grid since poisson uses p=0 moments and phi only.
kxloop: DO ikx = 1,local_nkx
kyloop: DO iky = 1,local_nky
zloop: DO iz = 1,local_nz
IF( (kxarray(iky,ikx).EQ.0._xp) .AND. (kyarray(iky).EQ.0._xp) ) THEN
inv_poisson_op(iky, ikx, iz) = 0._xp
inv_pol_ion (iky, ikx, iz) = 0._xp
! loop over n only up to the max polynomial degree
pol_tot = 0._xp ! total polarisation term
a:DO ia = 1,local_na ! sum over species
! ia = 1
sumker = 0._xp ! sum of ion polarisation term (Z_a^2/tau_a (1-sum_n kernel_na^2))
sumker = sumker + q2_tau(ia)*kernel(ia,in+ngj/2,iky,ikx,iz+ngz/2,ieven)**2 ! ... sum recursively ...
pol_tot = pol_tot + q2_tau(ia) - sumker
ENDDO a
operator_ion = pol_tot
IF(ADIAB_E) & ! Adiabatic electron model
pol_tot = pol_tot + 1._xp
IF(ADIAB_I) & ! adiabatic ions model, kernel_i = 0 and -q_i/tau_i*phi = rho_i
pol_tot = pol_tot + q_i**2/tau_i
inv_poisson_op(iky, ikx, iz) = 1._xp/pol_tot
inv_pol_ion (iky, ikx, iz) = 1._xp/operator_ion
ENDIF
END DO zloop
END DO kyloop
END DO kxloop
END SUBROUTINE evaluate_poisson_op
!******************************************************************************!
!******************************************************************************!
!!!!!!! Evaluate inverse polarisation operator for Poisson equation
!******************************************************************************!
SUBROUTINE evaluate_ampere_op
USE prec_const, ONLY : xp
USE array, ONLY : kernel, inv_ampere_op
USE grid, ONLY : local_na, local_nkx, local_nky, local_nz, ngz, total_nj, ngj,&
kp2array, kxarray, kyarray, SOLVE_AMPERE, iodd
USE model, ONLY : beta, ADIAB_I
USE species, ONLY : q, sigma
USE geometry, ONLY : hatB
USE prec_const, ONLY: xp
IMPLICIT NONE
REAL(xp) :: sum_jpol, kperp2, operator, q_i, sigma_i
INTEGER :: in,ikx,iky,iz,ia
q_i = 1._xp ! single charge ion
sigma_i = 1._xp ! trivial singe sigma_a = sqrt(m_a/m_i)
! We do not solve Ampere if beta = 0 to spare waste of ressources
IF(SOLVE_AMPERE) THEN
x:DO ikx = 1,local_nkx
y:DO iky = 1,local_nky
z:DO iz = 1,local_nz
kperp2 = kp2array(iky,ikx,iz+ngz/2,iodd)
IF( (kxarray(iky,ikx).EQ.0._xp) .AND. (kyarray(iky).EQ.0._xp) ) THEN
inv_ampere_op(iky, ikx, iz) = 0._xp
sum_jpol = 0._xp
! loop over n only up to the max polynomial degree
DO in=1,total_nj
sum_jpol = sum_jpol + q(ia)**2/(sigma(ia)**2)*kernel(ia,in+ngj/2,iky,ikx,iz+ngz/2,iodd)**2 ! ... sum recursively ...
IF(ADIAB_I) THEN
! no ion contribution
operator = 2._xp*kperp2*hatB(iz+ngz/2,iodd)**2 + beta*sum_jpol
inv_ampere_op(iky, ikx, iz) = 1._xp/operator
ENDIF
END SUBROUTINE evaluate_ampere_op
!******************************************************************************!
SUBROUTINE compute_lin_coeff
USE array, ONLY: xnapj, &
ynapp1j, ynapm1j, ynapp1jm1, ynapm1jm1,&
zNapm1j, zNapm1jp1, zNapm1jm1,&
xnapj, xnapjp1, xnapjm1,&
xnapp1j, xnapm1j, xnapp2j, xnapm2j,&
xphij, xphijp1, xphijm1,&
xpsij, xpsijp1, xpsijm1
USE species, ONLY: k_T, k_N, tau, q, sqrt_tau_o_sigma
USE model, ONLY: k_cB, k_gB, k_mB, k_tB, k_ldB
USE prec_const, ONLY: xp, SQRT2, SQRT3
USE grid, ONLY: parray, jarray, local_na, local_np, local_nj, ngj_o2,ngp_o2
INTEGER :: ia,ip,ij,p_int, j_int ! polynom. dagrees
REAL(xp) :: p_xp, j_xp
!! linear coefficients for moment RHS !!!!!!!!!!
DO ia = 1,local_na
p_int= parray(ip+ngp_o2) ! Hermite degree
p_xp = REAL(p_int,xp) ! REAL of Hermite degree
j_int= jarray(ij+ngj_o2) ! Laguerre degree
j_xp = REAL(j_int,xp) ! REAL of Laguerre degree
! All Napj terms related to magn. curvature and perp. gradient
xnapj(ia,ip,ij) = tau(ia)/q(ia)*(k_cB*(2._xp*p_xp + 1._xp) &
+k_gB*(2._xp*j_xp + 1._xp))
! Mirror force terms
ynapp1j (ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp+1._xp) * k_mB
ynapm1j (ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp) * k_mB
ynapp1jm1(ia,ip,ij) = +sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp+1._xp) * k_mB
ynapm1jm1(ia,ip,ij) = +sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp) * k_mB
! Trapping terms
zNapm1j (ia,ip,ij) = +sqrt_tau_o_sigma(ia) *(2._xp*j_xp+1._xp)*SQRT(p_xp) * k_tB
zNapm1jp1(ia,ip,ij) = -sqrt_tau_o_sigma(ia) * (j_xp+1._xp)*SQRT(p_xp) * k_tB
zNapm1jm1(ia,ip,ij) = -sqrt_tau_o_sigma(ia) * j_xp*SQRT(p_xp) * k_tB
ENDDO
p_int= parray(ip+ngp_o2) ! Hermite degree
p_xp = REAL(p_int,xp) ! REAL of Hermite degree
! Landau damping coefficients (ddz napj term)
xnapp1j(ia,ip) = sqrt_tau_o_sigma(ia) * SQRT(p_xp+1._xp) * k_ldB
xnapm1j(ia,ip) = sqrt_tau_o_sigma(ia) * SQRT(p_xp) * k_ldB
! Magnetic curvature term
xnapp2j(ia,ip) = tau(ia)/q(ia) * SQRT((p_xp+1._xp)*(p_xp + 2._xp)) * k_cB
xnapm2j(ia,ip) = tau(ia)/q(ia) * SQRT( p_xp *(p_xp - 1._xp)) * k_cB
j_int= jarray(ij+ngj_o2) ! Laguerre degree
j_xp = REAL(j_int,xp) ! REAL of Laguerre degree
xnapjp1(ia,ij) = -tau(ia)/q(ia) * (j_xp + 1._xp) * k_gB
xnapjm1(ia,ij) = -tau(ia)/q(ia) * j_xp * k_gB
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! ES linear coefficients for moment RHS !!!!!!!!!!
p_int= parray(ip+ngp_o2) ! Hermite degree
j_int= jarray(ij+ngj_o2) ! REALof Laguerre degree
j_xp = REAL(j_int,xp) ! REALof Laguerre degree
!! Electrostatic potential pj terms
IF (p_int .EQ. 0) THEN ! kronecker p0
xphij (ia,ip,ij) = +k_N(ia) + 2._xp*j_xp*k_T(ia)
xphijp1(ia,ip,ij) = -k_T(ia)*(j_xp+1._xp)
xphijm1(ia,ip,ij) = -k_T(ia)* j_xp
ELSE IF (p_int .EQ. 2) THEN ! kronecker p2
xphij(ia,ip,ij) = +k_T(ia)/SQRT2
xphijp1(ia,ip,ij) = 0._xp; xphijm1(ia,ip,ij) = 0._xp;
xphij (ia,ip,ij) = 0._xp; xphijp1(ia,ip,ij) = 0._xp
xphijm1(ia,ip,ij) = 0._xp;
ENDDO
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! Electromagnatic linear coefficients for moment RHS !!!!!!!!!!
p_int= parray(ip+ngp_o2) ! Hermite degree
j_int= jarray(ij+ngj_o2) ! REALof Laguerre degree
j_xp = REAL(j_int,xp) ! REALof Laguerre degree
IF (p_int .EQ. 1) THEN ! kronecker p1
xpsij (ia,ip,ij) = +(k_N(ia) + (2._xp*j_xp+1._xp)*k_T(ia))* sqrt_tau_o_sigma(ia)
xpsijp1(ia,ip,ij) = - k_T(ia)*(j_xp+1._xp) * sqrt_tau_o_sigma(ia)
xpsijm1(ia,ip,ij) = - k_T(ia)* j_xp * sqrt_tau_o_sigma(ia)
ELSE IF (p_int .EQ. 3) THEN ! kronecker p3
xpsij (ia,ip,ij) = + k_T(ia)*SQRT3/SQRT2 * sqrt_tau_o_sigma(ia)
xpsijp1(ia,ip,ij) = 0._xp; xpsijm1(ia,ip,ij) = 0._xp;
xpsij (ia,ip,ij) = 0._xp; xpsijp1(ia,ip,ij) = 0._xp
xpsijm1(ia,ip,ij) = 0._xp;
ENDDO
ENDDO
ENDDO
END SUBROUTINE compute_lin_coeff
!******************************************************************************!
!!!!!!! Auxilliary kernel functions/subroutines (developped with Leonhard Driever)
!******************************************************************************!
REAL(xp) FUNCTION taylor_kernel_n(order, n, y)
INTEGER, INTENT(IN) :: order
INTEGER, INTENT(IN) :: n
REAL(xp), INTENT(IN) :: y
REAL(xp) :: sum_variable
INTEGER :: m
REAL(xp) :: m_dp, n_dp
n_dp = REAL(n, xp)
sum_variable = 0._xp
DO m = n, order
m_dp = REAL(m, xp)
sum_variable = sum_variable + (-1._xp)**(m - n) * y**m / (GAMMA(n_dp + 1._xp) * GAMMA(m_dp - n_dp + 1._xp)) ! Denominator of m C n
END FUNCTION taylor_kernel_n
REAL(xp) FUNCTION pade_kernel_n(n, y, N_NUM, N_DEN)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n, N_NUM, N_DEN
REAL(xp), INTENT(IN) :: y
REAL(xp) :: pade_numerator_coeffs(N_NUM + 1), pade_denominator_coeffs(N_NUM + 1)
REAL(xp) :: numerator_sum
REAL(xp) :: denominator_sum
INTEGER :: m
! If N_NUM == 0, then the approximation should be the same as the Taylor approx. of N_NUM:
IF (N_NUM == 0) THEN
pade_kernel_n = taylor_kernel_n(N_NUM, n, y)
ELSE
CALL find_pade_coefficients(pade_numerator_coeffs, pade_denominator_coeffs, n, N_NUM, N_DEN)
numerator_sum = 0
denominator_sum = 0
DO m = 0, N_NUM
numerator_sum = numerator_sum + pade_numerator_coeffs(m + 1) * y ** m
END DO
DO m = 0, N_NUM
denominator_sum = denominator_sum + pade_denominator_coeffs(m + 1) * y ** m
END DO
pade_kernel_n = numerator_sum / denominator_sum
END FUNCTION pade_kernel_n
SUBROUTINE find_pade_coefficients(pade_num_coeffs, pade_denom_coeffs, n, N_NUM, N_DEN)
#ifdef SINGLE_PRECISION
EXTERNAL :: SGESV ! Use DGESV rather than SGESV for double precision
#else
EXTERNAL :: DGESV ! Use DGESV rather than SGESV for double precision
INTEGER, INTENT (IN) :: n, N_NUM, N_DEN ! index of the considered Kernel
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
REAL(xp), INTENT(OUT) :: pade_num_coeffs(N_NUM + 1), pade_denom_coeffs(N_NUM + 1) ! OUT rather than INOUT to make sure no information is retained from previous Kernel computations
REAL(xp) :: taylor_kernel_coeffs(N_NUM + N_NUM + 1), denom_matrix(N_NUM, N_NUM)
INTEGER :: m, j
REAL(xp) :: m_dp, n_dp
INTEGER :: return_code ! for DGESV
REAL(xp) :: pivot(N_NUM) ! for DGESV
n_dp = REAL(n, xp)
! First find the kernel Taylor expansion coefficients
DO m = 0, N_NUM + N_NUM ! m here counts the order of the derivatives
m_dp = REAL(m, xp)
IF (m < n) THEN
taylor_kernel_coeffs(m + 1) = 0
ELSE
taylor_kernel_coeffs(m + 1) = (-1)**(n + m) / (GAMMA(n_dp + 1._xp) * GAMMA(m_dp - n_dp + 1._xp))
END IF
END DO
! Next construct the denominator solving matrix
DO m = 1, N_NUM
DO j = 1, N_NUM
IF (N_NUM + m - j < 0) THEN
denom_matrix(m, j) = 0
ELSE
denom_matrix(m, j) = taylor_kernel_coeffs(N_NUM + m - j + 1)
END IF
END DO
END DO
! Then solve for the denominator coefficients, setting the first one to 1
!!!! SOLVER NOT YET IMPLEMENTED!!!!
pade_denom_coeffs(1) = 1
pade_denom_coeffs(2:) = - taylor_kernel_coeffs(N_NUM + 2 : N_NUM + N_NUM + 1) ! First acts as RHS vector for equation, is then transformed to solution by DGESV
#ifdef SINGLE_PRECISION
CALL SGESV(N_NUM, 1, denom_matrix, N_NUM, pivot, pade_denom_coeffs(2:), N_NUM, return_code) ! LAPACK solver for matrix equation. Note that denom_matrix is now no longer as expected
#else
CALL DGESV(N_NUM, 1, denom_matrix, N_NUM, pivot, pade_denom_coeffs(2:), N_NUM, return_code) ! LAPACK solver for matrix equation. Note that denom_matrix is now no longer as expected
#endif
! Print an error message in case there was a problem with the solver
IF (return_code /= 0) THEN
WRITE (*,*) 'An error occurred in the solving for the Pade denominator coefficients. The error code is: ', return_code
END IF
! Finally compute the numerator coefficients
DO m = 1, N_NUM + 1
pade_num_coeffs(m) = 0 ! As the array is not automatically filled with zeros
DO j = 1, m
!num_matrix(m, j) = taylor_kernel_coeffs(m - j + 1)
pade_num_coeffs(m) = pade_num_coeffs(m) + pade_denom_coeffs(j) * taylor_kernel_coeffs(m - j + 1)
END DO
END DO
END SUBROUTINE find_pade_coefficients
!******************************************************************************!
END MODULE numerics